. 24/7 Space News .
CHIP TECH
MIPT delivers world's first biosensor chips based on copper and graphene oxide
by Staff Writers
Moscow, Russia (SPX) Apr 17, 2018

Biosensor chips based on copper and graphene oxide are the future of many technologies.

Russian researchers from the Moscow Institute of Physics and Technology have developed biosensor chips of unprecedented sensitivity, which are based on copper instead of the conventionally used gold.

Besides making the device somewhat cheaper, this innovation will facilitate the manufacturing process. The research findings are reported in the journal Langmuir, named in honor of Irving Langmuir - a U.S. scientist awarded the 1932 Nobel Prize in chemistry "for his discoveries and investigations in surface chemistry."

Biosensor chips are used by pharmaceutical companies to develop drugs. These chips are also indispensable for studying the kinetics of molecular interactions. Furthermore, they could serve as a basis for various kinds of chemical analyzers used to find molecules indicating a disease and to detect hazardous substances in food or the environment, including leaks from chemical plants, among other things.

The Russian research team from the Laboratory of Nanooptics and Plasmonics of MIPT's Center for Photonics and 2D Materials has developed a sensing chip based on unconventional materials: copper and graphene oxide. As a result, their device achieves unmatched sensitivity, and yet its configuration is mostly standard and therefore compatible with existing commercial biosensors, e.g., such as Biacore, Reichert, BioNavis, or BiOptix.

"Our engineering solution is an important step towards developing biological sensors based on photonic and electronic technology," says Valentyn Volkov, professor of the University of Southern Denmark, who also heads the Laboratory of Nanooptics and Plasmonics at MIPT.

"By relying on standard manufacturing technologies and combining copper with graphene oxide - a material that has a great potential - we achieve a demonstrably high efficiency. This opens up new avenues for biosensor development."

The most common material used in optoelectronics and photonics is gold. Nearly all commercial biosensor chips incorporate gold films several tens of nanometers thick - a nanometer is one billionths of a meter.

The reason gold is so ubiquitous is that it has excellent optical properties and is chemically very stable. But even gold is not perfect. For one thing, it is expensive - specifically, high-purity gold costs over 25 times as much as high-purity copper. Also, gold is incompatible with the industrial processes used for manufacturing microelectronics, which severely limits its potential for application in device mass production.

Unlike gold, copper does not have these flaws. Its optical properties are on par with those of gold. Copper is used as an electrical conductor in microelectronics. However, it suffers from oxidation, or corrosion, and therefore has not been used in biochips.

Now, MIPT researchers have solved this problem by covering the metal with a 10-nanometer dielectric layer. In addition to preventing oxidation, this altered the optical properties of the chip, making it more sensitive.

To further refine their biosensor design, the authors added a graphene oxide layer on top of the copper and dielectric films, enabling unprecedented sensitivity. This third material was originally obtained in 1859 as graphite oxide by Oxford University professor Benjamin C. Brodie Jr., a renowned English chemist. Later on, graphene oxide experienced a sort of a revival following the discovery of graphene - the first known two-dimensional material - by Russian-born University of Manchester physicists and MIPT graduates Andre Geim and Konstantin Novoselov.

The work on graphene earned them the 2010 Nobel Prize in physics. Graphene oxide can be visualized as graphene - a one-dimensional sheet of carbon atoms bound in a honeycomb arrangement - with oxygen-containing groups dangling from some of the carbon atoms.

These groups provide a link between the device surface and the protein molecules that are analyzed. In an earlier study, the authors used graphene oxide to increase the sensitivity of standard gold-based biosensors. The material proved to be beneficial for copper sensors as well.

Replacing gold with copper opens up the way for developing compact biosensing devices to be implemented in smartphones, portable gadgets, wearable devices, and smart clothes, because copper-based chips are compatible with conventional microelectronics technology.

Scientists from across the world and electronics industry giants such as IBM and Samsung are putting a lot of effort into creating compact biosensors that could be built into electronic devices just like the present-day nano- and microelectromechanical motion sensors - accelerometers and gyroscopes.

It is hard to overestimate the impact that biosensors would have - suffice to say that our devices would acquire a new sense organ. And this is not merely a metaphor: Major corporations are working on technologies to enable AI, intelligent gadgets, and biointerfaces that would serve as mediators between the human brain and a computer. A combination of these technologies could give rise to real cybernetic organisms.

"It is known that copper is susceptible to the corrosive influence of the environment. We have shown that protective dielectric films only tens of nanometers thick do more than just prevent oxidation: In some cases, they increase biosensor sensitivity," says Yury Stebunov, the lead author of the paper and co-founder and CEO of GrapheneTek LLC.

"We don't see purely fundamental research as the final destination. Our solution will be available to potential customers before the end of the year. The technologies proposed in this study could be used to create miniature sensors and neural interfaces, and that's what we're working on right now."

Original research paper: Yu.V. Stebunov, D.I. Yakubovsky, D.Yu. Fedyanin, A.V. Arsenin, V.S. Volkov, Superior sensitivity of copper-based plasmonic biosensors // Langmuir DOI: 10.1021/acs.langmuir.8b00276 (2018). Related Links
Moscow Institute of Physics and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Polarization has strong impact on electrons, study shows
Onna, Japan (SPX) Apr 17, 2018
The movement of thousands of negatively charged atomic particles - electrons - makes modern electronics tick. Yet, ubiquitous as electrons are, the particulars of their behavior continue to stump physicists. One phenomenon has proven especially puzzling: how electrons move under the influence of polarized electromagnetic waves. Polarization occurs when waves, such as electromagnetic or light waves, rotate. Electromagnetic fields called microwaves have a rotating electric field that turns clockwise ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
'Big ideas' conference steps up funding for 'audacious' projects

Growing Plants in Antarctica 'Open Way' for Distant Space Missions - Analyst

Giving Roots and Shoots Their Space: The Advanced Plant Habitat

Take it from me: I'm not signing up to become a space tourist just yet

CHIP TECH
NEXT-C Advanced Electric Propulsion Engine Cleared to Begin Production

Deep Space Industries to provide Comet satellite propulsion for BlackSky, LeoStella

Ariane 5 launches two satellites

Rocket Lab 'Its Business Time' launch window to open 20 April 2018 NZT

CHIP TECH
Trace Gas Orbiter reaches stable Mars orbit, ready to start science mission

ExoMars poised to start science mission

UAH gets NASA early-stage funding for "Marsbees" concept

MIPT physicists design a model of Martian winter

CHIP TECH
China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

Earth-bound Chinese spacelab plunging to fiery end

CHIP TECH
Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

Relativity Space raises 35M in Series B funding

CHIP TECH
Japan 'rare earth' haul sparks hopes of cutting China reliance

'Everything-repellent' coating could kidproof phones, homes

Swansea scientists discover greener way of making plastics

Large single-crystal graphene could advance scalable 2-D materials

CHIP TECH
SPHERE Reveals Fascinating Zoo of Discs Around Young Stars

A Cosmic Gorilla Effect Could Blind the Detection of Aliens

ET Won't Phone Home: Psychologists Say SETI Has Faulty Alien Contact Methods

Brewing up Earth's earliest life

CHIP TECH
SSL to provide of critical capabilities for Europa Flyby Mission

Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.