. 24/7 Space News .
TECH SPACE
Laser 'drill' sets a new world record in laser-driven electron acceleration
by Staff Writers
Berkeley CA (SPX) Feb 26, 2019

A snapshot of a plasma channel's electron density profile (blue) formed inside a sapphire tube (gray) with the combination of an electrical discharge and an 8-nanosecond laser pulse (red/yellow).

Combining a first laser pulse to heat up and "drill" through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration.

The laser-plasma experiments, conducted at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), are pushing toward more compact and affordable types of particle acceleration to power exotic, high-energy machines - like X-ray free-electron lasers and particle colliders - that could enable researchers to see more clearly at the scale of molecules, atoms, and even subatomic particles.

The new record of propelling electrons to 7.8 billion electron volts (7.8 GeV) at the Berkeley Lab Laser Accelerator (BELLA) Center surpasses a 4.25 GeV result at BELLA announced in 2014. The latest research is detailed in the Feb. 25 edition of the journal Physical Review Letters. The record result was achieved during the summer of 2018.

The experiment used incredibly intense and short "driver" laser pulses, each with a peak power of about 850 trillion watts and confined to a pulse length of about 35 quadrillionths of a second (35 femtoseconds). The peak power is equivalent to lighting up about 8.5 trillion 100-watt lightbulbs simultaneously, though the bulbs would be lit for only tens of femtoseconds.

Each intense driver laser pulse delivered a heavy "kick" that stirred up a wave inside a plasma - a gas that has been heated enough to create charged particles, including electrons. Electrons rode the crest of the plasma wave, like a surfer riding an ocean wave, to reach record-breaking energies within a 20-centimeter-long sapphire tube.

"Just creating large plasma waves wasn't enough," noted Anthony Gonsalves, the lead author of the latest study. "We also needed to create those waves over the full length of the 20-centimeter tube to accelerate the electrons to such high energy."

To do this required a plasma channel, which confines a laser pulse in much the same way that a fiber-optic cable channels light. But unlike a conventional optical fiber, a plasma channel can withstand the ultra-intense laser pulses needed to accelerate electrons. In order to form such a plasma channel, you need to make the plasma less dense in the middle.

In the 2014 experiment, an electrical discharge was used to create the plasma channel, but to go to higher energies the researchers needed the plasma's density profile to be deeper - so it is less dense in the middle of the channel.

In previous attempts the laser lost its tight focus and damaged the sapphire tube. Gonsalves noted that even the weaker areas of the laser beam's focus - its so-called "wings" - were strong enough to destroy the sapphire structure with the previous technique.

Eric Esarey, BELLA Center Director, said the solution to this problem was inspired by an idea from the 1990s to use a laser pulse to heat the plasma and form a channel. This technique has been used in many experiments, including a 2004 Berkeley Lab effort that produced high-quality beams reaching 100 million electron volts (100 MeV).

Both the 2004 team and the team involved in the latest effort were led by former ATAP and BELLA Center Director Wim Leemans, who is now at the DESY laboratory in Germany. The researchers realized that combining the two methods - and putting a heater beam down the center of the capillary - further deepens and narrows the plasma channel. This provided a path forward to achieving higher-energy beams.

In the latest experiment, Gonsalves said, "The electrical discharge gave us exquisite control to optimize the plasma conditions for the heater laser pulse. The timing of the electrical discharge, heater pulse, and driver pulse was critical."

The combined technique radically improved the confinement of the laser beam, preserving the intensity and the focus of the driving laser, and confining its spot size, or diameter, to just tens of millionths of a meter as it moved through the plasma tube. This enabled the use of a lower-density plasma and a longer channel. The previous 4.25 GeV record had used a 9-centimeter channel.

The team needed new numerical models (codes) to develop the technique. A collaboration including Berkeley Lab, the Keldysh Institute of Applied Mathematics in Russia, and the ELI-Beamlines Project in the Czech Republic adapted and integrated several codes.

They combined MARPLE and NPINCH, developed at the Keldysh Institute, to simulate the channel formation; and INF and RNO, developed at the BELLA Center, to model the laser-plasma interactions.

"These codes helped us to see quickly what makes the biggest difference - what are the things that allow you to achieve guiding and acceleration," said Carlo Benedetti, the lead developer of INF and RNO. Once the codes were shown to agree with the experimental data, it became easier to interpret the experiments, he noted.

"Now it's at the point where the simulations can lead and tell us what to do next," Gonsalves said.

Benedetti noted that the heavy computations in the codes drew upon the resources of the National Energy Research Scientific Computing Center (NERSC) at Berkeley Lab. Future work pushing toward higher-energy acceleration could require far more intensive calculations that approach a regime known as exascale computing.

"Today, the beams produced could enable the production and capture of positrons," which are electrons' positively charged counterparts, said Esarey.

He noted that there is a goal to reach 10 GeV energies in electron acceleration at BELLA, and future experiments will target this threshold and beyond.

"In the future, multiple high-energy stages of electron acceleration could be coupled together to realize an electron-positron collider to explore fundamental physics with new precision," he said.


Related Links
Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Laser physics: Transformation through light
Munich, Germany (SPX) Feb 13, 2019
Laser physicists have taken snapshots of how C60 carbon molecules react to extremely short pulses of intense infrared light. C60 is an extremely well-studied carbon molecule, which consists of 60 carbon atoms and is structured like a soccer ball. The macromolecule is also known as buckminsterfullerene (or buckyball), a name given as a tribute to the architect Richard Buckminster Fuller, who designed buildings with similar shapes. Laser physicists have now irradiated buckyballs with infrared ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Space behaviour focus of Expedition 58

Technology developed in Brazil will be part of ISS

Company's 10th cargo supply mission featured expanded commercial capabilities for Cygnus spacecraft

First Emirati set to head to space in September: UAE

TECH SPACE
Firefly Aerospace Announces Mass Production Facility and Cape Canaveral Launch Site

Russian rocket launches Egyptian telecom satellite

SpaceX releases Israeli moon lander, pair of satellites into orbit

NASA greenlights SpaceX crew capsule test to ISS

TECH SPACE
Weather on Mars: Chilly with a chance of 'dust devils'

After a Reset, Curiosity Is Operating Normally

Signs of ancient flowing water on Mars

Creating a Space Colony Cryptocurrency

TECH SPACE
China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert

TECH SPACE
Partnerships Spur Industry for Flourishing Space Commerce

United Launch Services, SpaceX awarded satellite contracts

RIT faculty part of NASA's $242 million SPHEREx mission

18m pounds for OneWeb satellite constellation to deliver global communications

TECH SPACE
Scientists use tire fibers to increase fire resistance of concrete

Avoiding the crack of doom

Captured carbon dioxide converts into oxalic acid to process rare earth elements

NASA set to demonstrate x-ray communications in space

TECH SPACE
NIST 'Astrocomb' Opens New Horizons for Planet-Hunting Telescope

Astronomers use new technique to find extrasolar planets

Discovery of Planets Around Cool Stars Enabled with Hobby-Eberly Telescope

Researchers discover a flipping crab feeding on methane seeps

TECH SPACE
New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule

Tiny Neptune Moon Spotted by Hubble May Have Broken from Larger Moon

Ultima Thule is more pancake than snowman, NASA scientists discover

New Horizons' evocative farewell glance at Ultima Thule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.