24/7 Space News
ICE WORLD
Laser-based ice-core sampling for studying climate change
A photograph showing discrete cylindrical holes after sampling (51 vials) a 15 cm-long section of a Dome Fuji shallow ice core (DFS10) drilled in East Antarctica.
Laser-based ice-core sampling for studying climate change
by Staff Writers
Tokyo, Japan (SPX) Sep 26, 2023

Researchers led by Yuko Motizuki from the Astro-Glaciology Laboratory at the RIKEN Nishina Center in Japan have developed a new laser-based sampling system for studying the composition of ice cores taken from glaciers. The new system has a 3-mm depth-resolution-about 3 times smaller than what is currently available-meaning that it can detect temperature variations that occurred over much smaller periods of time in the past. The new laser melting sampler, or LMS, is expected to help reconstruct continuous annual temperature changes that occurred thousands to hundreds of thousands of years ago, which will help scientists understand climate change in the past and present. The study was published in the Journal of Glaciology on Sep 19.

Tree rings can tell us how old a tree is, and the color and width of the rings can tell us a little about the local climate during those years. Yearly growth of glaciers can tell us a similar story, but over a much longer period of time. Scientists are studying past changes in climate by analyzing cylindrical ice cores removed from glaciers. By taking samples at regular intervals along the cores, researchers can reconstruct continuous temperature profiles. However, this is impossible with samples taken from deep locations, where annual accumulation has often been compressed to sub-centimeters.

Currently there are two standard methods for sampling ice cores. One has a depth-precision of about 1 cm, which means that data from years with less than 1 cm accumulation are lost, and any one-time events that acutely altered climate would be missed. The other method has good depth-precision, but it destroys the part of the sample needed to analyze the water content - the primary way in which scientists calculate past temperatures. The new laser melting sampler overcomes both these problems; it has high depth-precision and does not destroy the critical oxygen and hydrogen isotopes found in water, which are needed to infer past temperature.

The LMS system delivers a laser beam through an optical fiber with a special silver nozzle, and quickly pumps out the liquid sample, eventually depositing it into stainless steel vials. Once the special hardware was assembled, the researchers experimented to optimize three critical parts of the process: the amount of power for the laser, the speed with which to insert the nozzle into the core as the laser melts the ice, and the rate at which the liquid sample is vacuumed out. With the optimization, the researchers could melt the ice as fast as possible, prevent the laser from overheating, and prevent the meltwater from getting too hot, which would destabilize the critical isotopes and prevent correct temperature measurements.

As a proof-of-concept experiment, the team sampled a 15-cm segment of a 50-cm Dome-Fuji shallow ice core, which was taken about a football-field (~92 m) below the ice surface in East arca (see Movie). In one test, they were able to take 51 discrete samples at regular 3-mm intervals along the ice core segment. They measured the stable oxygen and hydrogen isotopes that made up the meltwater extracted from the samples and found that they matched well with those taken by hand segmentation, a process only practical in this research setting. A good match means that the laser-melting process did not ruin the sample, and the inferred temperatures would be accurate.

Motizuki says, "With our laser-melting method, it's now possible to analyze stable water isotopes at a few-millimeters depth resolution. This will allow researchers to obtain continuous, long-term, annually-resolved temperature profiles, even in deep ice cores collected at low accumulation sites in Anta, as well as transient events such as sudden temperature changes which are recorded in them."

The researchers next plan to use the LMS system, or an upgraded next version, to study climate change related to natural variations in solar activity

Research Report:A novel laser melting sampler for discrete, sub-centimeter depth-resolved analyses of stable water isotopes in ice cores

Related Links
RIKEN
Beyond the Ice Age

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ICE WORLD
Antarctic sea ice hits lowest winter maximum on record: US data
Washington (AFP) Sept 26, 2023
The sea ice around Antarctica likely had a record low surface area when it was at its maximum size this winter, a preliminary US analysis of satellite data showed Monday. As the southern hemisphere transitions into spring, the US National Snow and Ice Data Center (NSIDC) said in a statement that Antarctic sea ice had only reached a maximum size of 16.96 million square kilometers (6.55 million square miles) this year, on September 10. The ice pack typically reaches its largest size during the col ... read more

ICE WORLD
Chinese universities climb up leading global ranking

NASA astronaut Frank Rubio returning to Earth after record 371 days in space

Kayhan Space Raises $7 million, Unveils First-Ever Autonomous Space Traffic Coordination Service

Two Russians, American reach space station

ICE WORLD
All engines added to NASA's Artemis II core stage

Historic NASA wind tunnel testing Mars Ascent Vehicle

Third Subscale Booster for future Artemis missions fires up at Marshall

'Anomaly' ends Rocket Lab launch mid-flight

ICE WORLD
Curiosity Needs an Altitude Adjustment: Sols 3955-3956

"Sombrero Rock": A Case of Case-Hardening?

Did life exist on Mars? Other planets? With AI's help, we may know soon

Big Fan of Rock Bands: Sols 3960-3961

ICE WORLD
Astronauts honored for contributions to China's space program

China capable of protecting astronauts from effects of space weightlessness

Tianzhou 5 spacecraft burns up on Earth reentry

Crew of Shenzhou XV mission honored for six-month space odyssey

ICE WORLD
Terran Orbital Announces Closing of $32.5 Million Public Offering

Iridium and McQ develop remote monitoring solution for Canadian Armed Forces in the Arctic

Terran Orbital announces pricing of Public Offering

Intelsat Inflight Connectivity expanded to all Airbus aircraft

ICE WORLD
Metal-loving microbes could replace chemical processing of rare earths

Material matters

Mineral-hungry clean tech sees countries seeking to escape China's shadow

Green issues dominate Paris fashion as green tech marketplace debuts

ICE WORLD
Scientists develop method of identifying life on other worlds

Study sheds new light on strange lava worlds

JWST's first spectrum of a TRAPPIST-1 planet

Alien Machines in the Solar System: The Possibilities and Potential Origins

ICE WORLD
Webb finds carbon source on surface of Jupiter's moon Europa

Hidden ocean the source of CO2 on Jupiter moon

Juice: why's it taking sooo long

Possible existence of Earth-like planet predicted in Outskirts of Solar System

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.