|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Beijing (SPX) Jul 01, 2015
Field-effect transistors (FETs) made of organic single crystals show superior mobility values as organic single crystals have fewer structural defects than their amorphous and polycrystalline counterparts. However, single-crystal devices are practically difficult to fabricate. For both fundamental studies and technological applications, high-throughput fabrication of single-crystal FETs is highly desired for either examination of device performance statistics or realization of a large array of devices and has attracted the attention of researchers from both academia and industry. In an article published in Science Bulletin, Prof. Hanying Li's research group describe a simple solution processing method where well-aligned single-crystals of organic semiconductors throughout a 1cm + 2cm substrate can be grown from a droplet pinned by a metal needle. The well-controlled alignment of the crystals originates from the unidirectional receding of the pinned droplet regulated by the capillary force. Because of the crystal alignment in a large area, fabrication of device arrays become possible. More importantly, this simple method is applicable to a wide range of organic semiconductors and potentially to inorganic materials, with six examples including both p- and n-channel materials demonstrated in this work. Furthermore, large-scale FET arrays are fabricated and studied, using TIPS-pentacene crystals (a well-known p-channel material) as an example. Among the 330 devices randomly selected from 2 substrates, an average hole mobility (u) of 3.44 +/- 1.21 cm2V-1s-1 with the maximum value of 6.46 cm2V-1s-1, on-to-off current ratios (I on/I off) > 10 5, and threshold voltages (VT) between -20 to -58 V were achieved. Among the 330 devices, 328 FETs showed the mobility above 1 cm2V-1s-1, the other two were 0.94 cm2V-1s-1 and 0.92 cm2V-1s-1 respectively. The achieved FET performance is among the best reported ones. As such, this work provides a highly efficient, yet simple approach to evaluate the charge transport properties of organic semiconductors through examining the performance statistics of single-crystal devices.
Related Links Science China Press Powering The World in the 21st Century at Energy-Daily.com
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |