. 24/7 Space News .
EARTH OBSERVATION
L3Harris high-resolution weather instrument set to launch on NOAA's GOES-T
by Staff Writers
Melbourne FL (SPX) Feb 24, 2022

Atmospheric river flowing across the northern Pacific Ocean captured by L3Harris' Advanced Baseline Imager onboard the GOES-West satellite. Credit: CIRA/NOAA

L3Harris Technologies' third high-resolution weather instrument is set to launch March 1 onboard a NOAA satellite - strengthening the nation's ability to monitor the environment and rapidly detect severe weather. The Advanced Baseline Imager (ABI) is the primary instrument for the Geostationary Operational Environmental Satellite-T (GOES-T), the third in a series of four advanced geostationary weather satellites with L3Harris' ABI onboard. The ABIs are controlled by L3Harris' enterprise ground system.

The ABI provides high-resolution video of weather and environmental systems using 16 spectral bands delivering three times the amount of spectral coverage, four times the resolution and five times faster than the previous generation of GOES satellites.

The Advanced Baseline Imagers on NOAA's two current geostationary operational satellites, GOES-East and GOES-West, enable more accurate meteorological forecasts, greater ability to study and monitor climate change, and allow experts to provide early warnings of severe weather conditions such as tornadoes, wildfires, and hurricanes.

"L3Harris' ABI has helped NOAA improve detection of wildfires, tornadoes and other extreme events that threaten lives," said Rob Mitrevski, Vice President and General Manager, Spectral Solutions, Space and Airborne Systems, L3Harris.

"We have been pioneers in space-based weather monitoring for more than 60 years and continue to set a high standard of capability with our Advanced Baseline Imager. We look forward to driving further forecasting advancements, as we continue our collaborative partnership with NOAA into the future."

The company also announced the delivery of its fourth imager to NASA in late 2021. The fourth and final ABI was integrated into the GOES-U satellite last month and is slated to launch in 2024.

GOES-U will complete NOAA's GOES-R series of advanced geostationary weather sensors and provides the groundwork for future Geostationary Extended Observations (GeoXO) imager programs, currently in the Phase A Formulation stage, with L3Harris underway with the next generation geostationary imager concept design.


Related Links
L3Harris Technologies
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
The second-generation PRISMA Earth observation system gets underway
Rome, Italy (SPX) Feb 23, 2022
Thales Alenia Space, the joint venture between Thales (67%) and Leonardo (33%), has signed a contract with the Italian space agency (ASI) to conduct a feasibility study for the PRISMA Second Generation (PSG) hyperspectral Earth observation system. It will be leading a consortium that includes Leonardo, Telespazio (the joint venture between Leonardo (67%) and Thales (33%)), e- GEOS and SITAEL. Lasting nine months, the feasibility study will take an innovative approach to support the development of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
NASA exploring ways to keep ISS afloat without Russian help: official

US-Russia tensions spill into space, but ISS safe -- for now

Astronaut Matthias Maurer marks his first 100 days in space

Tycoons bound for ISS aren't tourists, insists space company

EARTH OBSERVATION
SpaceX Axiom crew nears final training for first all-private mission to ISS

Rocket Lab selects Virginia for Neutron launch pad and manufacturing complex

New rocket to be partially reusable

Rocket Lab launches 2nd satellite for the Synspective SAR constellation

EARTH OBSERVATION
Ch'al-Type Rocks at Santa Cruz

Sols 3396-3397: Sediment Before the Pediment

Sols 3398-3400: The Road Ahead

First Multiple-Sol Drive

EARTH OBSERVATION
China establishes deep space exploration laboratory

China to make 6 human spaceflights, rocket's maiden flight in 2022: blue book

China welcomes cooperation on space endeavors

China Focus: China to explore lunar polar regions, mulling human landing: white paper

EARTH OBSERVATION
Rocket Lab Selected by MDA to Design and Build Spacecraft for Globalstar

Successful first year for UK-Australia Space Bridge

Intelsat announces successful emergence from financial restructuring process

SpaceX to launch IoT tech demo satellites for Plan-S

EARTH OBSERVATION
PPM partners with Aston Uni to develop game-changing satcom technology

Northrop Grumman awarded US Space Force contract for deep-space advanced radar

New imager microchip helps devices bring hidden objects to light

Using artificial intelligence to find anomalies hiding in massive datasets

EARTH OBSERVATION
Roman Space Telescope could snap first image of a Jupiter-like world

'Tatooine-like' exoplanet spotted by ground-based telescope

Day of Discovery: 7 Earth-Size Planets

Can a planet have a mind of its own?

EARTH OBSERVATION
New Horizons team puts names to the places on Arrokoth

NASA Telescope Spots Highest-Energy Light Ever Detected From Jupiter

Juno and Hubble data reveal electromagnetic 'tug-of-war' lights up Jupiter's upper atmosphere

Oxygen ions in Jupiter's innermost radiation belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.