. 24/7 Space News .
ENERGY TECH
DNA inspired superconductor could transform technology
by Staff Writers
Charlottesville VA (SPX) Aug 03, 2022

Could let computers work at warp speed, save energy, even make trains fly...

Scientists at the University of Virginia School of Medicine and their collaborators have used DNA to overcome a nearly insurmountable obstacle to engineer materials that would revolutionize electronics.

One possible outcome of such engineered materials could be superconductors, which have zero electrical resistance, allowing electrons to flow unimpeded. That means that they don't lose energy and don't create heat, unlike current means of electrical transmission. Development of a superconductor that could be used widely at room temperature - instead of at extremely high or low temperatures, as is now possible - could lead to hyper-fast computers, shrink the size of electronic devices, allow high-speed trains to float on magnets and slash energy use, among other benefits.

One such superconductor was first proposed more than 50 years ago by Stanford physicist William A. Little. Scientists have spent decades trying to make it work, but even after validating the feasibility of his idea, they were left with a challenge that appeared impossible to overcome. Until now.

Edward H. Egelman, PhD, of UVA's Department of Biochemistry and Molecular Genetics, has been a leader in the field of cryo-electron microscopy (cryo-EM), and he and Leticia Beltran, a graduate student in his lab, used cryo-EM imaging for this seemingly impossible project. "It demonstrates," he said, "that the cryo-EM technique has great potential in materials research."

Engineering at the Atomic Level
One possible way to realize Little's idea for a superconductor is to modify lattices of carbon nanotubes, hollow cylinders of carbon so tiny they must be measured in nanometers - billionths of a meter. But there was a huge challenge: controlling chemical reactions along the nanotubes so that the lattice could be assembled as precisely as needed and function as intended.

Egelman and his collaborators found an answer in the very building blocks of life. They took DNA, the genetic material that tells living cells how to operate, and used it to guide a chemical reaction that would overcome the great barrier to Little's superconductor.

In short, they used chemistry to perform astonishingly precise structural engineering - construction at the level of individual molecules. The result was a lattice of carbon nanotubes assembled as needed for Little's room-temperature superconductor.

"This work demonstrates that ordered carbon nanotube modification can be achieved by taking advantage of DNA-sequence control over the spacing between adjacent reaction sites," Egelman said.

The lattice they built has not been tested for superconductivity, for now, but it offers proof of principle and has great potential for the future, the researchers say.

"While cryo-EM has emerged as the main technique in biology for determining the atomic structures of protein assemblies, it has had much less impact thus far in materials science," said Egelman, whose prior work led to his induction in the National Academy of Sciences, one of the highest honors a scientist can receive.

Egelman and his colleagues say their DNA-guided approach to lattice construction could have a wide variety of useful research applications, especially in physics. But it also validates the possibility of building Little's room-temperature superconductor. The scientists' work, combined with other breakthroughs in superconductors in recent years, could ultimately transform technology as we know it and lead to a much more "Star Trek" future.

"While we often think of biology using tools and techniques from physics, our work shows that the approaches being developed in biology can actually be applied to problems in physics and engineering," Egelman said. "This is what is so exciting about science: not being able to predict where our work will lead."

Research Report:DNA-guided lattice remodeling of carbon nanotubes


Related Links
University of Virginia Health System
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Ultra-thin, high-efficient piezoelectric element generate electricity from daily life movement
Daegu, South Korea (SPX) Jul 06, 2022
A research team led by Professor Lee Sung-won of the Department of Physics and Chemistry at DGIST (President: Kuk Yang) succeeded in efficiently obtaining electrical energy from small movements of the human body, such as the blink of an eye, by using biocompatible materials to minimize the device's thickness. The developed energy generating device is expected to be applied as an energy source for remote medical diagnostic devices. As the need for a telemedicine system increases, there has been act ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
NewSpace may eliminate sun-synchronous orbits

Blue Origin to launch space tourist flight next week

When Russia leaves, what's next for the International Space Station?

Space Perspective unveils patented capsule design

ENERGY TECH
SpaceX rocket fueled for launch this week to send Korean mission to moon

CAA launches consultation on UK space launch from Cornwall

NASA prepares for Space Launch System rocket services contract

Marine Management Organisation opens consultation on Virgin Orbit launch site

ENERGY TECH
Ten Earth Years Later On Mars Sols 3553-3554

Images of EDL Debris

Rocky road ahead still not the good kind: Sols 3548-3550

Through the Pass We Go Sols 3551-3552

ENERGY TECH
Reusable experimental spacecraft put into orbit

China launches six new satellites

China's Tianzhou-3 cargo craft re-enters atmosphere under control

Researchers: Chinese rocket stage to hit Earth in uncontrolled descent

ENERGY TECH
Lockheed Martin doubles Venture Capital Fund To $400M

Sidus Space selects AWS for LizzieSat constellation

Have Canadians lost touch with space industry asks research report

Australians see space more as a danger than a benefit: Report

ENERGY TECH
A better way to quantify radiation damage in materials

Magnetic quantum material helps probe next-gen information technologies

Engineers repurpose photography technique to make stretchy, color-changing films

Scientists have created optical fibers with unusual properties

ENERGY TECH
New research on the emergence of the first complex cells challenges orthodoxy

Super-earth skimming habitable zone of red dwarf

How do collisions of rocks with planets help the planets evolve?

Lava caves of Hawaii Island contain thousands of unknown bacterial species

ENERGY TECH
Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.