. 24/7 Space News .
TIME AND SPACE
How to seed supermassive black holes shortly after the big bang
by Staff Writers
Trieste, Italy (SPX) Mar 24, 2020

Stock illustration of massive black holes in the early universe.

They are billions of times larger than our Sun: how is it possible that, as recently observed, supermassive black holes were already present when the Universe, now 14 billion years old, was "just" 800 million years old? For astrophysicists, the formation of these cosmic monsters in such a short time is a real scientific headache, which raises important questions on the current knowledge of the development of these celestial bodies. A recent article published in The Astrophysical Journal, by the SISSA Ph.D. student Lumen Boco and his supervisor Andrea Lapi, offers a possible explanation to the thorny issue.

Thanks to an original model theorized by the scientists from Trieste, the study proposes a very fast formation process in the initial phases of the development of the supermassive black holes, those up to now considered slower. Proving, mathematically, that their existence was possible in the young Universe, the results of the research reconcile the timing required for their growth with the limits imposed by the age of the Cosmos. The validity of the theory can be fully validated thanks to future gravitational wave detectors namely Einstein Telescope and LISA, but tested in several basic aspects also with the current Advanced LIGO/Virgo system.

The cosmic monster that grows at the centre of galaxies
The scientists started their study with a piece of well-known observational evidence: the growth of supermassive black holes occurs in the central regions of galaxies, progenitors of the current elliptical galaxies, which had a very high gas content and in which the stellar formation was extremely intense. "The biggest stars live a short time and very quickly evolve into stellar black holes, as large as several scores of solar masses; they are small, but many form in these galaxies". The dense gas that surrounds them, explain Boco and Lapi, has a very powerful definitive effect of dynamic friction and causes them to migrate very quickly to the centre of the galaxy. The majority of the numerous black holes that reach the central regions merge, creating the supermassive black hole seed.

Boco and Lapi continue: "According to classical theories, a supermassive black hole grows at the centre of a galaxy capturing the surrounding matter, principally gas, "growing it" on itself and finally devouring it at a rhythm which is proportional to its mass. For this reason, during the initial phases of its development, when the mass of the black hole is small, the growth is very slow. To the extent that, according to the calculations, to reach the mass observed, billions of times that of the Sun, a very long time would be required, even greater than the age of the young Universe". Their study, however, showed that things could go much faster than that.

The crazy dash of black holes: what the scientists have discovered
"Our numerical calculations show that the process of dynamic migration and fusion of stellar black holes can make the supermassive black hole seed reach a mass of between 10,000 and 100,000 times that of the Sun in just 50-100 million years".

At this point, the researchers say, "the growth of the central black hole according to the aforementioned direct accretion of gas, envisaged by the standard theory, will become very fast, because the quantity of gas it will succeed in attracting and absorbing will become immense, and predominant on the process we propose. Nevertheless, precisely the fact of starting from such a big seed as envisaged by our mechanism speeds up the global growth of the supermassive black hole and allows its formation, also in the Young Universe. In short, in light of this theory, we can state that 800 million years after the Big Bang the supermassive black holes could already populate the Cosmos".

"Looking" at the supermassive black hole seeds grow
The article, besides illustrating the model and demonstrating its efficacy, also proposes a method for testing it: "The fusion of numerous stellar black holes with the seed of the supermassive black hole at the centre will produce gravitational waves which we expect to see and study with current and future detectors", explain the researchers.

In particular, the gravitational waves emitted in the initial phases, when the central black hole seed is still small, will be identifiable by the current detectors like Advanced LIGO/Virgo and fully characterisable by the future Einstein Telescope. The subsequent development phases of the supermassive black hole could be investigated thanks to the future detector LISA, which will be launched in space around 2034. In this way, explain Boco and Lapi, "the process we propose can be validated in its different phases, in a complementary way, by future gravitational wave detectors.

"This research" concludes Andrea Lapi, coordinator of the Astrophysics and Cosmology group of SISSA, "shows how the students and researchers of our group are fully approaching the new frontier of gravitational waves and multi-messenger astronomy. In particular, our main goal will be to develop theoretical models, like that devised in this case, which serve to capitalise on the information originating from the experiments of current and future gravitational waves, thereby hopefully providing solutions for unresolved issues connected with astrophysics, cosmology and fundamental physics".

Research paper


Related Links
Scuola Internazionale Superiore Di Studi Avanzati
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Showing how the tiniest particles in our universe saved us from complete annihilation
Kashiwa, Japan (SPX) Feb 04, 2020
Recently discovered ripples of spacetime called gravitational waves could contain evidence to prove the theory that life survived the Big Bang because of a phase transition that allowed neutrino particles to reshuffle matter and anti-matter, explains a new study by an international team of researchers. How we were saved from a complete annihilation is not a question in science fiction or a Hollywood movie. According to the Big Bang theory of modern cosmology, matter was created with an equal amoun ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA leadership assessing mission impacts of coronavirus

How Space Station research is helping NASA's plans to explore the Moon and Beyond

New Spinoff publication shares how NASA innovations benefit life on Earth

Mission Control adjusts to coronavirus conditions

TIME AND SPACE
SpaceX plans first manned flight to space station in May

NASA's mobile moon rocket tower 44% over budget, IG says

NASA, SpaceX plan return to human spaceflight from U.S. soil in mid-May

Spacex Falcon 9 launches sixth batch of Starlink satellites

TIME AND SPACE
NASA's Curiosity Mars rover takes a new selfie before record climb

NASA's Mars Perseverance Rover Gets Its Sample Handling System

Waves in thin Martian air with wide effects

ExoMars to take off for the Red Planet in 2022

TIME AND SPACE
China's Long March-7A carrier rocket fails in maiden flight

China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

TIME AND SPACE
Soyuz to launch another batch of OneWeb constellation satellites

SpaceX launches Starlink mission from Florida

OneWeb launches 34 communications satellites from Kazakhstan

NewSpace Book on 10 Years of Commercial Space and Children's Book on Space Released

TIME AND SPACE
Europlanet launches 10 million euro research infrastructure supporting planetary science

Raytheon completes first tests of radar for anti-hypersonic sensor

Crowdsourced virtual supercomputer revs up virus research

L3Harris Technologies introduces new reflector antenna tailored for smallsat missions

TIME AND SPACE
Snapping A Space Shot

The Strange Orbits of 'Tatooine' Planetary Disks

Salmon parasite is world's first non-oxygen breathing animal

Observed: An exoplanet where it rains iron

TIME AND SPACE
Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.