. 24/7 Space News .
WATER WORLD
How hot is too hot for life deep below the ocean floor?
by Staff Writers
Bremen, Germany (SPX) Dec 14, 2020

illustration only

At what depth beneath the seabed does it become so hot that microbial life is no longer possible? This question is the focus of a close scientific cooperative effort between the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and MARUM - Center for Marine Environmental Sciences at the University of Bremen.

An expedition by the drilling program IODP (International Ocean Discovery Program) in 2016 has provided new insights into the temperature limits of life beneath the ocean floor. The findings have now been published by the international team in the professional journal Science.

The sediments that lie deep below the ocean floor present a very harsh habitat. Temperature and pressure steadily increase with depth, while the energy supply becomes increasingly scarce. It has only been known for about 30 years that, in spite of these conditions, microorganisms do inhabit the seabed at depths of several kilometers.

The deep biosphere is still not well understood, and this brings up fundamental questions: Where are the limits of life, and what factors determine them? Ambient temperature could well be an important factor. Thermophilic (heat-loving) microorganisms can exist quite comfortably at temperatures of up to 80 degrees Celsius.

Furthermore, there are hyperthermophilic bacteria and archaea that thrive at even higher temperatures, but require a high energy supply to maintain their cells. Under ideal laboratory conditions these can withstand temperatures as high as 122 degrees Celsius for a short amount of time. But to study how high temperatures affect life in the low-energy deep biosphere over the long-term, extensive deep-sea drilling is necessary. "Only a few scientific drilling sites have yet reached depths where temperatures in the sediments are greater than 30 degrees Celsius," explains the leader of the study, Prof. Kai-Uwe Hinrichs of MARUM. "The goal of the T-Limit Expedition, therefore, was to drill a thousand-meter deep hole into sediments with a temperature of up to 120 degrees Celsius - and we succeeded."

Worldwide unique drilling location
Like the search for life in outer space, determining the limits of life on the Earth is fraught with great technological challenges. Temperatures of 120 degrees Celsius are normally encountered at about 4,000 meters below the sea floor. There is only one way in the world for scientists to obtain samples from such great depths - with the Deep-sea Scientific Drilling Vessel Chikyu. To facilitate the drilling in this instance, a location in the Nankai Trough off the coast of Japan was selected. The sampling site lies in a water depth of 4.8 kilometers, but because of the steeper-than-average geothermal gradient here, it was possible to reach a temperature of 120 degrees Celsius in a hole only 1,180 meters deep.

"Surprisingly, the microbial population density collapsed at a temperature of only about 45 degrees," says co-chief scientist Dr. Fumio Inagaki of JAMSTEC.

"It is fascinating - in the high-temperature ocean floor there are broad depth intervals that are almost lifeless. But then we were able to detect cells and microbial activity again in deeper, even hotter zones - up to a temperature of 120 degrees."

While the concentration of vegetative cells decreases sharply to a level of less than 100 cells per cubic centimeter of sediment at over 50 degrees Celsius, the concentration of endospores increases rapidly and reaches a peak at 85 degrees Celsius. Endospores are dormant cells of certain types of bacteria that can reactivate and switch to a live state whenever conditions are favorable again. "Some specialist types are able to adapt to these severe conditions and persist over geological time spans in a sort of deep sleep," continues Inagaki.

Improved detection methods
Much of the research for this project was carried out at the very fringes of technical feasibility.

"Within the past twenty years many techniques for the detection of life have been improved, so that some are now as much as a hundred thousand times more sensitive," explains co-chief scientist Dr. Yuki Morono of JAMSTEC. In order to reliably detect the sparsely occurring microbial life in the 50-degree Celsius sediments, it is crucial to prevent contamination. Therefore, the processing of samples was monitored using strict contamination controls, and for particularly critical work the samples were transported by helicopter to the cleanroom laboratories at the IODP core repository in Kochi, Japan.

"Achieving the goals of the expedition would not have been possible without carrying out some aspects of the research on land with high quality of research environment control," according to Morono, who led the onshore research efforts during the expedition.

International cooperation
"The findings of our expedition are surprising. They show that at the lower boundary of the biosphere lethal limits coexist with opportunities for survival. We didn't expect that," says co-chief scientist Dr. Verena Heuer of MARUM.

"And this new understanding would not have been possible without the strong interdisciplinary team and its dedicated spirit of cooperation." 43 authors from 29 different institutes, representing nine countries, worked together on the recently published article. The study was carried out as a part of the work of Expedition 370 of the International Ocean Discovery Program, IODP. Investigation of the deep biosphere is a main research theme of IODP.

"With every expedition, advances are made in technical and analytical methods; researchers with diverse backgrounds and new ideas come together each time in order to answer a scientific question," continues Heuer. "And that is fascinating. Every new hole opens a window to new knowledge."

Research Report: Temperature limits to deep subseafloor life in the Nankai Trough subduction zone


Related Links
Center For Marine Environmental Sciences at Bremen
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
New US-European satellite reports back with first sea level measurements
Pasadena CA (JPL) Dec 11, 2020
Sentinel-6 Michael Freilich, a joint U.S.-European satellite built to measure global sea surface height, has sent back its first measurements of sea level. The data provide information on sea surface height, wave height, and wind speed off the southern tip of Africa. "We're excited for Sentinel-6 Michael Freilich to begin its critical work studying sea level and helping us understand the many aspects of our planet's global ocean," said Thomas Zurbuchen, NASA's associate administrator for science a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
COVID-19 drug research and bio-mining launching to the International Space Station

Turkey's Space Strategy: Trilateral Cooperation With Russia, Kazakhstan is Logical, Agency Head Says

SpaceX to carry heart tissue, fiber optics lab to space station

Voyager 1 and 2 detect new kind of solar electron burst

WATER WORLD
China to build new production base for solid rockets

SpaceX's first upgraded cargo Dragon capsule docks at space station

SpaceX's Falcon 9 lifts off, en route to International Space Station

EUMETSAT confirms the choice of Arianespace's European launchers for its future missions

WATER WORLD
Best region for life on Mars was far below surface

New tech can get oxygen, fuel from Mars's salty water

Laboratory experiments unravelling the mystery of the Mars moon Phobos

ESA and Auroch Digital launch Mars Horizon game

WATER WORLD
China plans to launch new space science satellites

How it took decades for space program to take off

China to Begin Construction of Its Space Station Next Year

Moon mission tasked with number of firsts for China

WATER WORLD
Government funds UK companies at the forefront of space innovation

Germany blocks Chinese takeover of satellite tech company: report

OneWeb's satellite plant returns to full-scale production

NT forging ahead in the space race

WATER WORLD
Germany opens competition probe into Facebook VR headsets

DoD to adopt flight simulation program for ordinary computers

Marines to join U.S., British military branches for video game tournament

Lincoln Laboratory is designing a payload to integrate on Japanese satellites

WATER WORLD
Key building block for organic molecules discovered in meteorites

Rochester researchers uncover key clues about the solar system's history

Fast-moving gas flowing away from young star's asteroid belt may be caused by icy comet vaporisation

Rapid-forming giants could disrupt spiral protoplanetary discs giants

WATER WORLD
Swedish space instrument participates in the search for life around Jupiter

Researchers model source of eruption on Jupiter's moon Europa

Radiation Does a Bright Number on Jupiter's Moon

New plans afoot beyond Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.