. 24/7 Space News .
ENERGY TECH
Harnessing hot helium ash to drive rotation in fusion reactors
by Staff Writers
Princeton NJ (SPX) Nov 15, 2021

Trajectories of (a) hot ash and (b) colder fuel ions as they interact with a growing, high-frequency wave in a magnetized plasma. The ash diffuses stochastically due to resonant interactions with the wave. Absent any response in the fuel ions, this diffusion will create an electric field, leading to plasma rotation. However, the ion drift from left to right in (b) demonstrates new understanding of how the fuel ions respond to the wave, which can sometimes negate the rotation drive effect.

In controlled nuclear fusion, heavy isotopes of hydrogen fuse into helium, releasing a huge amount of energy in the process. A large portion of the energy released by a laboratory fusion reaction goes into hot helium ash (an impurity in the plasma that bears no resemblance to ash from a fire). This ash is around 30 billion degrees Celsius, compared to 200 million degrees for the bulk plasma. For context, the temperature at the core of the sun is 15 million C. The ash energy may be captured by a plasma wave, via wave-particle interaction known as alpha channeling. The energy in the wave can then be absorbed by fuel ions, powering the fusion reaction.

The wave-particle interaction that gives rise to alpha channeling occurs when the helium ash velocity matches the velocity of the wave, a condition known as Landau resonance after its discoverer, 20th century Soviet physicist Lev Landau. This resonance allows energy and momentum to exchange efficiently between the wave and particle, in much the same way a surfer gains energy from an ocean wave when traveling at the same speed as the wave.

The result is that, twice per orbit in a magnetic field in doughnut-shaped tokamak fusion facilities, the particle receives a "kick" from the wave. Over many interactions, these kicks lead to random walk diffusion, as can be seen in Figure 1a. For a well-chosen wave, this diffusion draws ash out of the plasma while cooling it, transferring energy into the wave.

Before now, physicists did not know whether the extraction of helium ash by alpha channeling also extracts a net charge from the plasma. Such extraction drives rotation in the plasma. Rotation, in turn, can stabilize instabilities in plasma, and shear in the rotation can suppress plasma turbulence.

This reduction in instabilities and turbulence makes it possible to maintain the plasma's high temperature with less power and reduced operating costs. Thus, extracting charge and driving rotation via alpha channeling could dramatically help to improve the performance of tokamaks.

Alternatively, if net charge is not extracted through alpha channeling, fuel ions must be pulled into the hot plasma center to balance the charge lost by the helium ash. That is also an advantageous effect. The question is: which advantageous effect occurs, charge extraction or plasma fueling?

To answer this question, we note that extraction of the charge depends on how all the plasma particles respond to the chosen wave. Treating all the components of the plasma requires a self-consistent alpha channeling model that has been missing until now.

Our model shows that there is a critical difference between plane waves that grow in time, versus steady-state waves that grow in space. A time-growing wave creates conditions that cancel all the charge extraction from the ash, by causing a slight drift in the relatively cold bulk ions (Figure 1b). As a consequence, no rotation is driven. In contrast, steady-state waves injected by an antenna at the plasma edge allow for extraction of charge and rotation drive.

More complex waves exhibit a mix of these behaviors, in a readily predictable way. Thus, this model self-consistently establishes the conditions under which alpha channeling extracts charge and drives rotation, bringing us closer to finer-tuned plasma control.


Related Links
Princeton University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Meter-scale plasma waveguides push the particle accelerator envelope
College Park MD (SPX) Nov 15, 2021
Charged particle accelerators have been a central tool of basic physics research for almost a hundred years, perhaps most famously as "atom smashers" for understanding the elementary constituents of the universe. As accelerators have progressed to ever higher energies to probe ever smaller constituents, they have grown to enormous size: the Large Hadron Collider is a remarkable 27 kilometers in circumference. Recently, however, researchers at the University of Maryland have used intense lasers and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Matthias Maurer arrives at the International Space Station

SpaceX capsule with crew of four docks with ISS

Orbital Assembly Corporation promote space hotels in LEO for investment

Off-world colony simulation reveals changes in human communication over time with Earth

ENERGY TECH
SpaceX deploys 53 Starlink internet satellites from Falcon 9 rocket

Webb's Ariane 5 core stage made ready

SpaceX launches four astronauts to ISS

SpinLaunch conducts first successful test of giant 'suborbital accelerator' satellite sling

ENERGY TECH
Mars - or Arrakis

Docking the Perseverance robotic arm

Astronaut training in the land of volcanoes

Curiosity powers on with extra energy for Martian science

ENERGY TECH
Chinese astronauts' EVAs to help extend mechanical arm

Astronaut becomes first Chinese woman to spacewalk

Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission

ENERGY TECH
European software-defined satellite starts service

Groundbreaking Iridium Certus 100 Service Launches with Partner Products for Land, Sea, Air and Industrial IoT

iRocket And Turion Space ink agreement for 10 launches to low earth orbit

OneWeb and Leonardo DRS announce partnership to offer low earth orbit services for Pentagon

ENERGY TECH
LeoLabs Australia announces Aussie Space Radar Project

UK Space Agency funds further research into new laser-based satellite communications system

Russia successfully tests 'space radiation shield'

ISS changes orbit to avoid collision with Chinese debris

ENERGY TECH
Circumbinary planet discovered by TESS validates new detection technique

Discovering exoplanets using artificial intelligence

Hunting for alien planets

New model will help find Earth-like Exoplanets

ENERGY TECH
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.