![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Hong Kong (SPX) May 01, 2019
Like memories in computers, quantum memories are essential components for quantum computers - a new generation of data processors that obey quantum mechanics laws and can overcome the limitations of classical computers. They may push boundaries of fundamental science and help create new drugs, explain cosmological mysteries, or enhance accuracy of forecasts and optimization plans with their potent computational power. Quantum computers are expected to be much faster and more powerful than their traditional counterparts as information is calculated in qubits - which unlike the older units (bits) used in classical computers, can represent both 0 and 1 at the same time. Photonic quantum memories allow for the storage and retrieval of flying single-photon quantum states. However, production of such highly-efficient quantum memories remains a major challenge as it requires perfectly matched photon-matter quantum interface. Meanwhile, the energy of a single photon is too weak and can be easily lost into the noisy sea of stray light background. For a long time, these problems suppressed quantum memory efficiencies to below 50% - a threshold value crucial for practical applications. Now for the first time in history, a joint research team led by Prof. DU Shengwang from the Department of Physics and William Mong Institute of Nano Science and Technology at HKUST; Prof. ZHANG Shanchao from SCNU who graduated his PhD study at HKUST; Prof. YAN Hui from SCNU and a former postdoctoral fellow at HKUST; as well as Prof. ZHU Shi-Liang from SCNU and Nanjing University, has found a way to boost the efficiency of photonic quantum memories to over 85% with a fidelity of over 99%. The team created such a quantum memory by trapping billions of rubidium atoms into a hair-like tiny space - those atoms are cooled down to nearly absolute zero temperature (about 0.00001 K) using lasers and magnetic field. The team also found a smart way to distinguish the single photon from the noisy background light sea. The finding brought the dream of an 'universal' quantum computer a step closer to reality. Such quantum memories can also be used as repeaters in a quantum network, laying the foundation for a new generation of quantum-based internet. "In this work, we code a flying qubit onto the polarization of a single photon and store it into the laser-cooled atoms," said Prof Du. "Although the quantum memory demonstrated in this work is only for one qubit operation, it opens the possibility for emerging quantum technology and engineering in the future." The finding was recently published as a cover story of the authoritative journal Nature Photonics - the latest of a series of research from Prof Du's lab on quantum memory, first begun in 2011.
![]() ![]() New robust device may scale up quantum tech, researchers say West Lafayette IN (SPX) May 01, 2019 Researchers have been trying for many years to build a quantum computer that industry could scale up, but the building blocks of quantum computing, qubits, still aren't robust enough to handle the noisy environment of what would be a quantum computer. A theory developed only two years ago proposed a way to make qubits more resilient through combining a semiconductor, indium arsenide, with a superconductor, aluminum, into a planar device. Now, this theory has received experimental support in a devi ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |