. 24/7 Space News .
STELLAR CHEMISTRY
Gamma Ray Observatory discovers origin of highest-energy cosmic rays in galaxy
by Staff Writers
Los Alamos NM (SPX) Mar 16, 2021

An infrared image of the dust clouds in the Cocoon region taken with the Spitzers Space Telescope's IR photometer. The HAWC TeV gamma-ray excess (color from green to yellow to red) is overlaid on the 24 micrometer infrared image of the dust clouds in the Cocoon region from the Spitzer Space Telescope (white regions). Image Credit: TeV: Binita Hona (HAWC Collaboration), IR: Hora et. al, Spitzer's Growing Legacy, ASP Conference Series, 2010, P. Ogle, ed.

A long-time question in astrophysics appears to finally be answered, thanks to a collection of large, high-tech water tanks on a mountainside in Mexico. The High-Altitude Water Cherenkov (HAWC) data shows that the highest-energy cosmic rays come not from supernovae, but from star clusters.

"The origin of the highest-energy cosmic rays in the galaxy has been an open question in astrophysics for more than 60 years," said Patrick Harding, a Los Alamos National Laboratory astrophysicist doing research using HAWC.

"Very few regions of the galaxy have both the power to produce high-energy particles and the necessary environments to boost those particles to the petaelectronVolt (PeV) energies that are seen in the highest-energy cosmic rays. And most of the expected regions to produce the particles have been ruled out in recent years by high-energy observatories."

"In this paper, we discover high-energy gamma rays coming from Cygnus OB2, a birthplace of massive stars located inside the 'Cygnus Cocoon' superbubble, meaning it is likely the source of these highest-energy galactic cosmic rays," Harding said.

The cosmic rays have been observed striking Earth's atmosphere at PeV energies by the detection tanks at the HAWC observatory near Puebla, Mexico. Instead of supernovae, this work shows that star clusters such as the Cygnus Cocoon serve as "PeVatrons" - PeV accelerators capable of creating high-energy particles that travel across the galaxy.

The algorithms used to analyze the highest-energy HAWC photons, which were used in a paper published in Nature Astronomy, were developed by Los Alamos postdoctoral researcher Kelly Malone. Additionally, the paper which first identified the Cocoon as a significant emitter of high-energy gamma-rays using the HAWC high-energy catalog, was also led by Malone, who is the leader of the Galactic Science Working Group within HAWC.

"HAWC is the first observatory to detect gamma rays from across the sky with energies above 100 TeV. This high-energy reach allows us to answer fundamental questions about our galaxy," said Malone.

The consequences of this result are relevant for several areas of Los Alamos astrophysics study: The transport of cosmic rays and their interactions with the surrounding medium are of interest at the Laboratory, and in particular, Los Alamos studies which types of astronomical sources can efficiently accelerate cosmic rays to high energy, and which acceleration mechanism enables it. Identifying a source of these high-energy cosmic rays will lead to greater theoretical understanding of these mechanisms.

Research Report: "HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon"


Related Links
Los Alamos National Laboratory
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
IceCube detection of a high-energy particle proves 60-year-old theory
Madison WI (SPX) Mar 11, 2021
On December 6, 2016, a high-energy particle called an electron antineutrino hurtled to Earth from outer space at close to the speed of light carrying 6.3 petaelectronvolts (PeV) of energy. Deep inside the ice sheet at the South Pole, it smashed into an electron and produced a particle that quickly decayed into a shower of secondary particles. The interaction was captured by a massive telescope buried in the Antarctic glacier, the IceCube Neutrino Observatory. IceCube had seen a Glashow resonance e ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Air leak in Russia's ISS Zvezda module still unresolved

NASA awards Rapid IV On-Ramp 1 Contract for Spacecraft Systems, Services

ISS crew to relocate Soyuz to make room for new arrivals

NASA astronauts complete spacewalk

STELLAR CHEMISTRY
Soyuz rocket gets new paint job for first time in over 50 years

NASA Targets March 18 for SLS Hot Fire Test

Breaking the warp barrier for faster-than-light travel

SpaceX launches 22nd cluster of Starlink satellites

STELLAR CHEMISTRY
Perseverance SuperCam science instrument delivers first results

Perseverance 'SuperCam' begins hunt for past life on Mars

Hope Probe captures new images of Mars with the Emirates Ultraviolet Spectrometer

Early Martian climate was intermittently warm

STELLAR CHEMISTRY
China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

STELLAR CHEMISTRY
City under pressure to invest into UK space industry

Pioneering UK space technology gets government cash boost

Satellite company Spire Global plans to expand with new funds

SpaceX launches 21st Starlink communications satellite cluster

STELLAR CHEMISTRY
ELSA-d mission licence approved by UK Space Agency

NASA, Partners test 3D printed rocket pad designed by students

Porous, ultralow-temperature supercapacitors could power Mars, polar missions

Arecibo telescope collapse may complicate NASA asteroid mission

STELLAR CHEMISTRY
Distant planet may be on its second atmosphere

Ideas for future NASA missions searching for extraterrestrial civilizations

A giant, sizzling planet may be orbiting the star Vega

Organic materials essential for life on Earth are found for the first time on the surface of an asteroid

STELLAR CHEMISTRY
SwRI scientists image a bright meteoroid explosion in Jupiter's atmosphere

Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.