24/7 Space News
ENERGY TECH
Fusion energy could play a major role in the global response to climate change
illustration only
Fusion energy could play a major role in the global response to climate change
by Nancy W. Stauffer | MIT Energy Initiative
Boston MA (SPX) Oct 25, 2024

For many decades, fusion has been touted as the ultimate source of abundant, clean electricity. Now, as the world faces the need to reduce carbon emissions to prevent catastrophic climate change, making commercial fusion power a reality takes on new importance. In a power system dominated by low-carbon variable renewable energy sources (VREs) such as solar and wind, "firm" electricity sources are needed to kick in whenever demand exceeds supply - for example, when the sun isn't shining or the wind isn't blowing and energy storage systems aren't up to the task. What is the potential role and value of fusion power plants (FPPs) in such a future electric power system - a system that is not only free of carbon emissions but also capable of meeting the dramatically increased global electricity demand expected in the coming decades?

Working together for a year-and-a-half, investigators in the MIT Energy Initiative (MITEI) and the MIT Plasma Science and Fusion Center (PSFC) have been collaborating to answer that question. They found that - depending on its future cost and performance - fusion has the potential to be critically important to decarbonization. Under some conditions, the availability of FPPs could reduce the global cost of decarbonizing by trillions of dollars. More than 25 experts together examined the factors that will impact the deployment of FPPs, including costs, climate policy, operating characteristics, and other factors. They present their findings in a new report funded through MITEI and entitled "The Role of Fusion Energy in a Decarbonized Electricity System."

"Right now, there is great interest in fusion energy in many quarters - from the private sector to government to the general public," says the study's principal investigator (PI) Robert C. Armstrong, MITEI's former director and the Chevron Professor of Chemical Engineering, Emeritus. "In undertaking this study, our goal was to provide a balanced, fact-based, analysis-driven guide to help us all understand the prospects for fusion going forward." Accordingly, the study takes a multidisciplinary approach that combines economic modeling, electric grid modeling, techno-economic analysis, and more to examine important factors that are likely to shape the future deployment and utilization of fusion energy. The investigators from MITEI provided the energy systems modeling capability, while the PSFC participants provided the fusion expertise.

Fusion technologies may be a decade away from commercial deployment, so the detailed technology and costs of future commercial FPPs are not known at this point. As a result, the MIT research team focused on determining what cost levels fusion plants must reach by 2050 to achieve strong market penetration and make a significant contribution to the decarbonization of global electricity supply in the latter half of the century.

The value of having FPPs available on an electric grid will depend on what other options are available, so to perform their analyses, the researchers needed estimates of the future cost and performance of those options, including conventional fossil fuel generators, nuclear fission power plants, VRE generators, and energy storage technologies, as well as electricity demand for specific regions of the world. To find the most reliable data, they searched the published literature as well as results of previous MITEI and PSFC analyses.

Overall, the analyses showed that - while the technology demands of harnessing fusion energy are formidable - so are the potential economic and environmental payoffs of adding this firm, low-carbon technology to the world's portfolio of energy options.

Perhaps the most remarkable finding is the "societal value" of having commercial FPPs available. "Limiting warming to 1.5 degrees C requires that the world invest in wind, solar, storage, grid infrastructure, and everything else needed to decarbonize the electric power system," explains Randall Field, executive director of the fusion study and MITEI's director of research. "The cost of that task can be far lower when FPPs are available as a source of clean, firm electricity." And the benefit varies depending on the cost of the FPPs. For example, assuming that the cost of building a FPP is $8,000 per kilowatt (kW) in 2050 and falls to $4,300/kW in 2100, the global cost of decarbonizing electric power drops by $3.6 trillion. If the cost of a FPP is $5,600/kW in 2050 and falls to $3,000/kW in 2100, the savings from having the fusion plants available would be $8.7 trillion. (Those calculations are based on differences in global gross domestic product and assume a discount rate of 6 percent. The undiscounted value is about 20 times larger.)

The goal of other analyses was to determine the scale of deployment worldwide at selected FPP costs. Again, the results are striking. For a deep decarbonization scenario, the total global share of electricity generation from fusion in 2100 ranges from less than 10 percent if the cost of fusion is high to more than 50 percent if the cost of fusion is low.

Other analyses showed that the scale and timing of fusion deployment vary in different parts of the world. Early deployment of fusion can be expected in wealthy nations such as European countries and the United States that have the most aggressive decarbonization policies. But certain other locations - for example, India and the continent of Africa - will have great growth in fusion deployment in the second half of the century due to a large increase in demand for electricity during that time. "In the U.S. and Europe, the amount of demand growth will be low, so it'll be a matter of switching away from dirty fuels to fusion," explains Sergey Paltsev, deputy director of the MIT Center for Sustainability Science and Strategy and a senior research scientist at MITEI. "But in India and Africa, for example, the tremendous growth in overall electricity demand will be met with significant amounts of fusion along with other low-carbon generation resources in the later part of the century."

A set of analyses focusing on nine subregions of the United States showed that the availability and cost of other low-carbon technologies, as well as how tightly carbon emissions are constrained, have a major impact on how FPPs would be deployed and used. In a decarbonized world, FPPs will have the highest penetration in locations with poor diversity, capacity, and quality of renewable resources, and limits on carbon emissions will have a big impact. For example, the Atlantic and Southeast subregions have low renewable resources. In those subregions, wind can produce only a small fraction of the electricity needed, even with maximum onshore wind buildout. Thus, fusion is needed in those subregions, even when carbon constraints are relatively lenient, and any available FPPs would be running much of the time. In contrast, the Central subregion of the United States has excellent renewable resources, especially wind. Thus, fusion competes in the Central subregion only when limits on carbon emissions are very strict, and FPPs will typically be operated only when the renewables can't meet demand.

An analysis of the power system that serves the New England states provided remarkably detailed results. Using a modeling tool developed at MITEI, the fusion team explored the impact of using different assumptions about not just cost and emissions limits but even such details as potential land-use constraints affecting the use of specific VREs. This approach enabled them to calculate the FPP cost at which fusion units begin to be installed. They were also able to investigate how that "threshold" cost changed with changes in the cap on carbon emissions. The method can even show at what price FPPs begin to replace other specific generating sources. In one set of runs, they determined the cost at which FPPs would begin to displace floating platform offshore wind and rooftop solar.

"This study is an important contribution to fusion commercialization because it provides economic targets for the use of fusion in the electricity markets," notes Dennis G. Whyte, co-PI of the fusion study, former director of the PSFC, and the Hitachi America Professor of Engineering in the Department of Nuclear Science and Engineering. "It better quantifies the technical design challenges for fusion developers with respect to pricing, availability, and flexibility to meet changing demand in the future."

The researchers stress that while fission power plants are included in the analyses, they did not perform a "head-to-head" comparison between fission and fusion, because there are too many unknowns. Fusion and nuclear fission are both firm, low-carbon electricity-generating technologies; but unlike fission, fusion doesn't use fissile materials as fuels, and it doesn't generate long-lived nuclear fuel waste that must be managed. As a result, the regulatory requirements for FPPs will be very different from the regulations for today's fission power plants - but precisely how they will differ is unclear. Likewise, the future public perception and social acceptance of each of these technologies cannot be projected, but could have a major influence on what generation technologies are used to meet future demand.

The results of the study convey several messages about the future of fusion. For example, it's clear that regulation can be a potentially large cost driver. This should motivate fusion companies to minimize their regulatory and environmental footprint with respect to fuels and activated materials. It should also encourage governments to adopt appropriate and effective regulatory policies to maximize their ability to use fusion energy in achieving their decarbonization goals. And for companies developing fusion technologies, the study's message is clearly stated in the report: "If the cost and performance targets identified in this report can be achieved, our analysis shows that fusion energy can play a major role in meeting future electricity needs and achieving global net-zero carbon goals."

Research Report:The role of fusion energy in a decarbonized electricity system

Related Links
Plasma Science and Fusion Center
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Department of Energy awards $49M to advance foundational fusion research
Los Angeles CA (SPX) Oct 11, 2024
The U.S. Department of Energy (DOE) has allocated $49 million in funding for 19 projects aimed at strengthening laboratory-based research within its Foundational Fusion Materials, Nuclear Science, and Technology programs. This funding is intended to align basic science research efforts with the broader goals of the Fusion Energy Sciences (FES) program. Jean Paul Allain, DOE Associate Director of Science for Fusion Energy Sciences, emphasized the importance of these initiatives, stating, "The Fusio ... read more

ENERGY TECH
SpaceX Crew-8 astronauts undock from ISS, begin journey home to Earth

Don't let tech gurus decide the future: Nobel winner Simon Johnson

NASA continues to assess Solar Sail system progress following deployment

Space-ng Introduces AstroVision at Silicon Valley Space Week

ENERGY TECH
US Space Force awards SpaceX over $733M for national security launch services

Southern Launch and Varda secure Australian approval for spacecraft re-entry at Koonibba Test Range

Space Force Funds $35M Space Propulsion Institute Led by U-M

Rocket Lab Adds Mission to 2024 Launch Schedule, Prepares for Launch in Days

ENERGY TECH
USTC unveils high-energy Mars battery with extended lifespan for exploration

NASA selects crew for 45-day simulated Mars mission in Houston

Potential microbial habitats in Martian ice

Perseverance just keeps roving across Mars

ENERGY TECH
China to launch 14th manned mission to Tiangong Space Station

China sets ambitious space science development goals through 2050

China successfully retrieves first reusable test satellite Shijian-19

China unveils new lunar spacesuit design ahead of moon mission

ENERGY TECH
Eutelsat America and OneWeb to provide Enhanced Satellite Services for US Govt

SpaceX launches OneWeb 20 mission

Intelsat expands satellite backhaul services in Nigeria and West Africa

China deploys 18 new satellites for Spacesail network

ENERGY TECH
India's green fashion lovers switch to secondhand

Advances in 3D-printed concrete boost strength, durability, and eco-friendly potential

Radiation belt exploration boosted by smallsat constellation mission CORBES

Successful test could lead to discovery of element 120

ENERGY TECH
SwRI and JPL study reveals liquid brine flows on airless worlds

It's twins mystery of famed brown dwarf solved

Astronomers Use New Technique to Search for Alien Signals Between Planets

Using AI to find the smallest and closest exoplanets around sun-like stars

ENERGY TECH
NASA and SpaceX Set for Europa Clipper Launch on October 14

NASA probe Europa Clipper lifts off for Jupiter's icy moon

Is life possible on a Jupiter moon? NASA goes to investigate

NASA launches probe to study if life possible on icy Jupiter moon

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.