Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
From separation to transformation: Metal-organic framework shows new talent
by Staff Writers
Washington DC (SPX) May 27, 2014


This iron-based metal-organic framework (large structure) can catalyze a reaction that transforms ethane (gray and light blue molecules) into pure ethanol (light blue, red and gray). Scientists think the framework could help reveal ways to mimic other biological functions. Image courtesy NIST.

This gift from science just keeps on giving. Measurements taken at the National Institute of Standards and Technology (NIST) show why a material already known to be good at separating components of natural gas also can do something trickier: help convert one chemical to another, a process called catalysis. The discovery is a rare example of a laboratory-made material easily performing a task that biology usually requires a complex series of steps to accomplish.

The material is a metal-organic framework (MOF), one of a class of substances whose porosity, high surface area and tunable properties make them promising for applications such as gas storage and drug delivery. This particular iron-based MOF, which the research team refers to as Fe-MOF-74,was built in the lab of Jeffrey Long, a professor of chemistry at the University of California Berkeley, who also has patented it.*

Having learned two years ago** that Fe-MOF-74 could effectively separate closely related components of natural gas from one another, this time Long's collaborators at the NIST Center for Neutron Research (NCNR) looked at its power to catalyze reactions-that is, accelerate or enable the chemical reaction of two other materials.

In this case, they turned ethane,a component of natural gas, into ethanol, a component of vodka. The research team knew that the iron in the MOF could change from possessing one number of electrons to another, which raised interesting questions.

"One of the big long-term goals of biochemistry is to build things with specific functions from the ground up," says the NCNR's Craig Brown. "It's hard to simply make things like nature does, because she often converts one material into another in a fiendishly complex way. But with a MOF that can mimic nature's effect, we might be able to make the same thing, but right in the lab and far more easily."

While the MOF was great at catalyzing the reaction, the team wasn't sure why. The search for understanding led to two (fairly technical)discoveries at the NCNR: the importance of the MOF's iron for catalysis, and the reason the oxidizer worked so well.

Iron being able to change its number of electrons is the key to creating a high-yield catalytic process. When the team substituted magnesium for 10 percent of the iron in the MOF, the reaction produced 40 percent less ethanol than before. The NCNR's neutron diffractometer helped clarify why, and they also showed that the oxidizer-nitrous oxide, a lopsided molecule with oxygen at one end and two nitrogen atoms at the other-must connect its oxygen end to the iron in the MOF for catalysis to occur.

Brown says exploring the catalytic behavior in this material may reveal other ways to use MOFs to mimic what biology can do. "We hope to get more insights into the reactivity of this material and possibly the design, synthesis and catalytic activities of other MOFs," he says.

*D.J. Xiao, E.D. Bloch, J.A. Mason, W.L. Queen, M.R. Hudson, N. Planas, J. Borycz, A.L. Dzubak, P. Verma, K. Lee, F. Bonino, V. Crocella, J. Yano, S. Bordiga, D.G. Truhlar, L. Gagliardi, C.M. Brown, J.R. Long. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. Nature Chemistry, DOI 10.1038/nchem.1956,May 18, 2014.

**See the April 2012 NIST Tech Beat story, "Novel Filter Material Could Cut Natural Gas Refining Costs" here.

.


Related Links
National Institute of Standards and Technology (NIST)
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
On quantification of the growth of compressible mixing layer
Beijing, China (SPX) May 26, 2014
CML has been a research topic for more than five decades, due to its wide applications in propulsion design. Mixing in CML is controlled by the compressibility effects of velocity and density variations over the mixing layer, and quantified by the growth rate of CML. However, the lack of understanding of various definitions of mixing thicknesses has yielded scatter in analyzing experimenta ... read more


TECH SPACE
LRO View of Earth

Saturn in opposition tonight, will appear next to the moon

Russia to begin Moon colonization in 2030

Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

TECH SPACE
Mars Curiosity rover may have transported Earth bacteria to Mars

NASA Rover Gains Martian Vista From Ridgeline

Opportunity Explores Region of Aluminum Clay Minerals

Mars mineral could be linked to microbes

TECH SPACE
Staying alive: Rescue mission for disco-era satellite

Airbus design of European service module for Orion approved by ESA

Swiss Space Systems launch the ZeroG experience

Britain's Longitude Prize back after 300-year absence

TECH SPACE
Moon rover Yutu comes closer to public

The Phantom Tiangong

New satellite launch center to conduct joint drill

China issues first assessment on space activities

TECH SPACE
Scientists Seek Answers With Space Station Thyroid Cancer Study

New ISS Expedition Unaffected by Proton Crash

US-Russian Tensions Roiling Outer Space Cooperation

Rounding up the BCATs on the ISS

TECH SPACE
Third-stage engine glitch causes Proton-M accident

Russia's Roscosmos plans to launch two more Protons this year

SpaceX Dragon Spacecraft Returns Critical NASA Science from ISS

SpaceX-3 Mission To Return Dragon's Share of Space Station Science

TECH SPACE
Starshade Could Help Photograph Distant Planets

Giant telescope tackles orbit and size of exoplanet

Odd planet, so far from its star

New Exomoon Hunting Technique Could Find Solar System-like Moons

TECH SPACE
NIST studies why quantum dots suffer from 'fluorescence intermittency'

Eumelanin's secrets

Liquid crystal as lubricant

On quantification of the growth of compressible mixing layer




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.