. 24/7 Space News .
ENERGY TECH
For plasma with a hot core and cool edges, Super-H mode shows promise
by Staff Writers
Washington DC (SPX) May 18, 2022

stock image only

Future fusion reactors have a conundrum: how to maintain a plasma core that is hotter than the surface of the sun without melting the device walls. Researchers call this challenge "core-edge integration." One method of cooling the plasma edge is to inject impurities such as nitrogen. The impurities absorb heat and release the energy as light that dissipates evenly across the walls.

New research finds that a previously identified operating regime called Super H-mode can leverage the use of impurities to improve integration. It does so by increasing temperature and pressure in the outer region of the plasma, called the pedestal. Higher pressures and temperatures at the pedestal lead to higher fusion performance in the core, while allowing for a suitable energy dissipation outside of the pedestal.

The magnetic confinement vessels used in fusion research, known as tokamaks, exhaust heat and particles from the plasma during operation. This exhaust path, known as the divertor, can handle high heat and particle loads within certain limits. Injecting impurities such as nitrogen can reduce the temperature and heat flux to levels the material can withstand.

However, these impurities often penetrate into the core, which reduces overall fusion performance. Super-H mode leverages specific plasma responses, or instabilities, to reach much higher pressure and density. The higher density helps to dissipate radiative heat.

Research at the DIII-D National Fusion Facility demonstrated how a high-performance operating regime called Super H-mode can leverage the use of impurities to improve core-edge integration.

One strategy for mitigating heat from the plasma core is to inject gases like nitrogen into the exhaust. These gases are technically impurities compared to the main plasma and radiate heat before it reaches the divertor, which reduces heat flux to levels the wall material can withstand.

The benefit of Super-H mode stems from the physics of the plasma instabilities that are prevalent with this regime. In regular regimes, two instabilities usually couple together and drive each other. One type peels off the outer layer of the plasma, while another causes it to balloon outward.

In Super-H mode, strong shaping of the plasma helps decouple and isolate these processes, opening a window of high performance that leverages peeling instabilities. Peeling instabilities are preferred because they allow pressure to increase as a function of density, which increases both fusion performance and divertor dissipation.

Ballooning instabilities, by contrast, cause pressure to decrease as a function of density, which degrades performance. With good control, fusion plant operators can navigate to a regime that can optimize both core and divertor performance via high density and pressure.

This research, for the first time, coupled peeling instabilities with a high-density pedestal and a radiative divertor. The experiments achieved significant edge cooling with only modest effects on core performance, and theoretical simulations suggest this approach would be compatible with devices like ITER and future power plants.


Related Links
DIII-D National Fusion Facility
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
MIT expands research collaboration with Commonwealth Fusion Systems
Boston MA (SPX) May 11, 2022
MIT's Plasma Science and Fusion Center (PSFC) will substantially expand its fusion energy research and education activities under a new five-year agreement with Institute spinout Commonwealth Fusion Systems (CFS). "This expanded relationship puts MIT and PSFC in a prime position to be an even stronger academic leader that can help deliver the research and education needs of the burgeoning fusion energy industry, in part by utilizing the world's first burning plasma and net energy fusion machine, S ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Engineers investigating Voyager 1 telemetry data

What you need to know about NASA's Boeing Orbital Flight Test-2

Blue Origin delays next flight over technical issues

Boeing's Starliner spaceship docks with ISS in high-stakes test mission

ENERGY TECH
Dawn Aerospace wins Blue Canyon's X-SAT Saturn-Class propulsion business

ISRO tests large human rated solid rocket booster for the Gaganyaan program

Gilmour Space completes full duration test fire of new Phoenix rocket engine

Boeing's troubled Starliner launches for ISS in key test

ENERGY TECH
Everyone wants a piece of this Pie - Sols 3478-3479

Physicists explain how type of aurora on Mars is formed

Mars' emitted energy and seasonal energy imbalance

China's Zhurong rover switches to dormant mode in severe Martian dust storm

ENERGY TECH
Tianwen-1 mission marks first year on Mars

New cargo spacecraft being built

The beginning of a multi-spacecraft exploration in Martian space by China, the US and Europe

China's cargo craft docks with space station combination

ENERGY TECH
ESA spurs investment in space entrepreneurs

Australian Uni and SSC sign MoU to strengthen space capabilities in Australia and Sweden

Spire Global to launch five satellites on SpaceX Transporter-5 Mission

Why the Space-as-a-Service Business Models are Taking the Space Sector by Storm

ENERGY TECH
The European Innovation Council supports E.T. PACK-Fly, a project to mitigate space debris

Ultracold Bubbles on Space Station Open New Avenues of Quantum Research

The missing piece to faster, cheaper and more accurate 3D mapping

Preparation for LizzieSat-1 Mission continues as NASA customer completes important milestone

ENERGY TECH
The search for how life on Earth transformed from simple to complex

Seeing through the fog-pinpointing young stars and their protoplanetary disks

The origin of life: A paradigm shift

Researchers reveal the origin story for carbon-12, a building block for life

ENERGY TECH
Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter

Greenland Ice, Jupiter Moon Share Similar Feature

Search for life on Jupiter moon Europa bolstered by new study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.