. 24/7 Space News .
ENERGY TECH
Feeling the heat: Fusion reactors used to test spacecraft heat shields
by Staff Writers
Pittsburgh PA (SPX) Nov 15, 2021

This set of carbon test samples (before, left, and after, right) was exposed to hot plasma in the DIII-D tokamak. Researchers measured the ablation behavior under this extreme heat and particle flow to simulate conditions experienced by spacecraft heat shields during atmospheric entry.

Spacecraft have long used heat shields for protection during entry into planetary atmospheres. Future missions to the outer solar system will need more sophisticated materials than currently exist. The extreme heating conditions needed to study new shield materials are, however, very difficult to achieve experimentally on Earth.

Scientists working at the DIII-D National Fusion Facility at General Atomics (GA) recently developed an innovative approach that uses the conditions inside a fusion reactor for testing heat shield materials.

During high-speed atmospheric entries of up to 100,000 miles per hour, such as those required in missions to the Solar System's gas giants, the atmospheric gas surrounding the spacecraft turns into plasma (a mixture of ions and electrons) and spacecraft temperatures increase to more than 10,000 F. To protect the scientific payload, the heat shield material burns (or ablates) in a controlled manner, which pulls the excess heat away from the core of the spacecraft.

Past heat shield testing approaches using lasers, plasma jets, and hypervelocity projectiles suffered from the problem that no single method could simulate the exact heating conditions present during a high-speed atmospheric entry. Consequently, past models of heat shield behavior have sometimes over- or under-predicted ablation of the heat shield, with potentially disastrous results.

The experiments at DIII-D demonstrated that the hot plasma created by a fusion reactor during operation offers a novel and potentially improved way of modeling heat shield behavior, especially for entries into Venus or the gas giants.

"Certain regions of the plasma in DIII-D closely approximate the conditions created when heat shields impact planetary atmospheres at extreme velocities," said Dr. Dmitri Orlov of the University of California San Diego, who led the multi-institutional team. "Our intent with these experiments was to leverage both these conditions and DIII-D's rich suite of diagnostic instruments to develop a more accurate model of heat shield behavior."

Most experiments conducted at DIII-D are intended to explore the physics basis for fusion energy. An existing system at DIII-D, known as the Divertor Materials Evaluation System (DiMES), is designed to test materials for future reactors. DiMES can expose test samples to various plasma conditions as well as launch pellets of test material through the plasma.

Dr. Orlov and Dr. Eva Kostadinova of Auburn University, working with a team of scientists, undergraduate, and graduate students, used DiMES to study the ablation rates of carbon samples under extreme conditions and refine predictive models for carbon-based heat shield behavior.

These experiments were conducted under the auspices of the Frontier Sciences program, funded by the U.S. Department of Energy, to provide access to DIII-D and other DOE-funded facilities to the broader physics community.

"DIII-D features relatively long plasma discharges with well-controlled stable conditions at the edge, where the heat flux and the flow speed are similar to those experienced during atmospheric entries," said Dr.

Kostadinova. "This allowed us to simulate some of the most extreme conditions heat shields have experienced, such as the entry of the Galileo probe to Jupiter's atmosphere, without the need to launch our test samples at high velocities."

Because DIII-D is one of the most flexible and highly instrumented fusion reactors in the world, the team was able to gather a range of valuable data on the behavior of the samples.

By using scaling techniques, they extrapolated the results to larger projectiles and longer exposures, which allowed for comparison with experimental data from previous space flight missions and other on-ground testing facilities. The results offer considerable promise to develop the advanced heat shield materials necessary for planned missions to Venus and the Jovian moons.


Related Links
General Atomics
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Integrating hot cores and cool edges in fusion reactors
Pittsburgh PA (SPX) Nov 15, 2021
Future fusion reactors have a conundrum: maintain a plasma core that is hotter than the surface of the sun without melting the walls that contain the plasma. Fusion scientists refer to this challenge as "core-edge integration." Researchers working at the DIII-D National Fusion Facility at General Atomics have recently tackled this problem in two ways: the first aims to make the fusion core even hotter, while the second focuses on cooling the material that reaches the wall. Protecting the pla ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Matthias Maurer arrives at the International Space Station

SpaceX capsule with crew of four docks with ISS

Orbital Assembly Corporation promote space hotels in LEO for investment

Off-world colony simulation reveals changes in human communication over time with Earth

ENERGY TECH
SpaceX deploys 53 Starlink internet satellites from Falcon 9 rocket

Webb's Ariane 5 core stage made ready

SpaceX launches four astronauts to ISS

SpinLaunch conducts first successful test of giant 'suborbital accelerator' satellite sling

ENERGY TECH
Mars - or Arrakis

Docking the Perseverance robotic arm

Astronaut training in the land of volcanoes

Curiosity powers on with extra energy for Martian science

ENERGY TECH
Chinese astronauts' EVAs to help extend mechanical arm

Astronaut becomes first Chinese woman to spacewalk

Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission

ENERGY TECH
European software-defined satellite starts service

Groundbreaking Iridium Certus 100 Service Launches with Partner Products for Land, Sea, Air and Industrial IoT

iRocket And Turion Space ink agreement for 10 launches to low earth orbit

OneWeb and Leonardo DRS announce partnership to offer low earth orbit services for Pentagon

ENERGY TECH
LeoLabs Australia announces Aussie Space Radar Project

UK Space Agency funds further research into new laser-based satellite communications system

Russia successfully tests 'space radiation shield'

ISS changes orbit to avoid collision with Chinese debris

ENERGY TECH
Circumbinary planet discovered by TESS validates new detection technique

Discovering exoplanets using artificial intelligence

Hunting for alien planets

New model will help find Earth-like Exoplanets

ENERGY TECH
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.