. 24/7 Space News .
EARLY EARTH
FSU researchers find decrease in crucial trace element preceded ancient mass extinction
by Staff Writers
Tallahassee FL (SPX) Nov 23, 2022

Just like 183 million years ago, more and more carbon dioxide is being added to the Earth system today, which could reduce marine trace metals such as molybdenum that many organisms rely on for survival as the oceans lose oxygen and bury more organic carbon. After the ancient extinction event, global conditions gradually became more hospitable to life, but that process took hundreds of thousands of years.

A decline in the element molybdenum across the planet's oceans preceded a significant extinction event approximately 183 million years ago, new research from Florida State University shows.

The decrease may have contributed to the mass extinction, in which up to 90% of species in the oceans perished, and it suggests that much more organic carbon was buried in the extinction event than had been previously estimated. The work is published in AGU Advances.

"This research tells us more about what was happening with molybdenum during this extinction event, but we also take it a step further," said Jeremy Owens, an associate professor in FSU's Department of Earth, Ocean and Atmospheric Science and a paper co-author. "Our findings help us understand how much carbon was cycling through the system, and it's much larger than previously thought - potentially on the scale of modern atmospheric and oceanic increases due to human activities."

Previous research showed decreases in molybdenum during the main phase of the ancient mass extinction, but it was unclear how widespread the decrease was, how early it started or how long it lasted.

To answer those questions, the researchers analyzed rocks from three sites in Alberta, Canada, which had been part of a massive ocean that surrounded the ancient continent of Pangea. Because the site was connected to that global ocean, the researchers were able to infer conditions across the entire globe, instead of only a single basin.

They found new estimates for the start and duration of the molybdenum drawdown and the initial phase of deoxygenation. Their research showed that the decrease preceded the start of the extinction by about one million years, and it lasted about two million years in total, which is much longer than scientists had previously estimated.

The decrease in molybdenum also implies a massive increase in organic carbon burial in the ocean that may have been several times larger than previous calculations. Those calculations were based on estimations of carbon dioxide released from volcanic activity, implying that carbon dioxide release from volcanoes was actually much higher, which would be necessary to balance global carbon reservoirs.

Just like 183 million years ago, more and more carbon dioxide is being added to the Earth system today, which could reduce marine trace metals such as molybdenum that many organisms rely on for survival as the oceans lose oxygen and bury more organic carbon. After the ancient extinction event, global conditions gradually became more hospitable to life, but that process took hundreds of thousands of years.

"The uniqueness of the study sites has allowed us to take a deep look into how the chemistry of the global ocean changed across millions of years, which reconciles much of the current scientific debates that are focused on the local versus global aspects of this time interval," said Theodore Them, a former postdoctoral fellow at FSU who is now an assistant professor at the College of Charleston.

Researchers from the California Institute of Technology, Western Michigan University, the University of Utrecht, and Virginia Polytechnic Institute and State University were co-authors in this study.

Research Report:Reduced Marine Molybdenum Inventory Related to Enhanced Organic Carbon Burial and an Expansion of Reducing Environments in the Toarcian (Early Jurassic) Oceans


Related Links
Florida State University
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Rapid fluctuations in oxygen levels coincided with Earth's first mass extinction
Tallahassee FL (SPX) Nov 18, 2022
Rapid changes in marine oxygen levels may have played a significant role in driving Earth's first mass extinction, according to a new study led by Florida State University researchers. About 443 million years ago, life on Earth was undergoing the Late Ordovician mass extinction, or LOME, which eliminated about 85% of marine species. Scientists have long studied this mass extinction and continue to investigate its possible causes, such as reduced habitat loss in a rapidly cooling world or persisten ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Who will become history's first 'parastronaut'?

Preparing For Space Travel

With new supplies, space station astronauts to research mending broken bones

AFRL awards contract for pioneering spacecraft in region of Moon

EARLY EARTH
SpaceX Dragon supply ship launch scrubbed by bad weather

France, Germany, Italy agree on next-generation space rockets

Rocket Lab completes final launch rehearsal ahead of first Electron Mission from US

LOFTID inflatable heat shield test a success, early results show

EARLY EARTH
An early start to a long weekend - Sols 3660-3664

The first life in our solar system may have been on Mars

Mars was covered by 300 meter deep oceans

Perseverance investigates intriguing Martian bedrock

EARLY EARTH
Xi: China open to space exchanges, cooperation

Shenzhou XIV taikonauts perform third spacewalk

Galactic Energy carries out fourth successful launch

China launches spacecraft carrying cargo for space station

EARLY EARTH
Einstein Industries Ventures joins ESA Investor Network

Satellite broadband firms join forces

AE Industrial Partners completes investment in York Space Systems

SFL contracted for 15 additional HawkEye 360 RF geolocation microsatellites

EARLY EARTH
French-Lebanese architect seeks pro-climate construction transformation

Quandum Aerospace tested Zortrax resin 3D Printing Ecosystem

Scientists demonstrate continuous-wave lasing of deep-ultraviolet laser diode at room temps

'Sail' to de-orbit would-be space junk

EARLY EARTH
Glass-like shells of diatoms help turn light into energy in dim conditions

An exoplanet atmosphere as never seen before

Colliding magnetic fields reveal unknown planets

"Polluted" white dwarfs show that stars and planets grow together

EARLY EARTH
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.