. 24/7 Space News .
STELLAR CHEMISTRY
FAST detects coherent interstellar magnetic field with a technique conceived at Arecibo
by Staff Writers
Beijing, China (SPX) Jan 06, 2022

The Taurus molecular cloud (grey scale), of which L1544 is a part, is superimposed onto the 2MASS sky image and the field orientation based on Planck data (thin white lines). The HINSA Zeeman spectrum (thick white line) is shown with the fitted Zeeman signature (blue).

Magnetic fields are the essential, but often "secret" ingredients of the interstellar medium and the process of making stars. The secrecy shrouding interstellar magnetic fields can be attributed to the lack of experimental probes.

While Michael Faraday was already probing the link between magnetism and electricity with coils in the early 19th century in the basement of the Royal Institution, astronomers nowadays still cannot deploy coils light-years away.

Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), an international team led by Dr. LI Di from National Astronomical Observatories of Chinese Academy of Sciences (NAOC) has obtained accurate magnetic field strength in molecular cloud L1544 - a region of the interstellar medium that seems ready to form stars.

The team employed the so-called HI Narrow Self-Absorption (HINSA) technique, first conceived by LI Di and Paul Goldsmith based on Arecibo data in 2003. FAST's sensitivity facilitated a clear detection of the HINSA's Zeeman effect. The results suggest that such clouds achieve a supercritical state, i.e., are primed for collapse, earlier than standard models suggest.

"FAST's design of focusing radio waves on a cable-driven cabin results in clean optics, which has been vital to the success of the HINSA Zeeman experiment," said Dr. LI.

The study was published in Nature on Jan. 5.

The Zeeman effect - the splitting of a spectral line into several components of frequency in the presence of a magnetic field - is the only direct probe of interstellar magnetic field strength. The interstellar Zeeman effect is small. The frequency shift originating in the relevant clouds is only a few billionths of the intrinsic frequencies of the emitting lines.

In 2003, the spectra of molecular clouds were found to contain an atomic-hydrogen feature called HINSA, which is produced by hydrogen atoms cooled through collisions with hydrogen molecules. Since this detection was made by the Arecibo telescope, the Zeeman effect for HINSA has been deemed a promising probe of the magnetic field in molecular clouds.

HINSA has a line strength 5-10 times higher than that of molecular tracers. HINSA also has a relatively strong response to magnetic fields and, unlike most molecular tracers, is robust against astrochemical variations.

FAST's HINSA measurements put the magnetic field strength in L1544 at about 4 uGauss, i.e., 6 million times weaker than that of Earth. A combined analysis with quasar (active supermassive blackhole) absorption and hydroxyl emission also revealed a coherent magnetic field structure throughout the cold neutral medium, the molecular envelope, and the dense core, with similar orientation and magnitude.

Therefore, the transition from magnetic subcriticality to supercriticality - i.e., when the field can and cannot support the cloud against gravity, respectively - occurs in the envelope instead of the core, in contrast with the conventional picture.

How the interstellar magnetic field dissipates to enable cloud collapse remains an unsolved problem in star formation. The main proposed solution has long been ambipolar diffusion - the decoupling of neutral particles from plasma - in cloud cores.

The coherence of the magnetic field revealed by the HINSA Zeeman effect means that dissipation of the field occurs during the formation of the molecular envelope, possibly through a different mechanism than ambipolar diffusion.

Research Report: "An Early Transition to Magnetic Supercriticality in Star Formation"


Related Links
Five-hundred-meter Aperture Spherical radio Telescope (FAST),
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Sunshield deploys on NASA's Next Flagship Telescope
Washington DC (SPX) Jan 05, 2022
The James Webb Space Telescope team has fully deployed the spacecraft's 70-foot sunshield, a key milestone in preparing it for science operations. The sunshield - about the size of a tennis court at full size - was folded to fit inside the payload area of an Arianespace Ariane 5 rocket's nose cone prior to launch. The Webb team began remotely deploying the sunshield Dec. 28, 2021, three days after launch. "This is the first time anyone has ever attempted to put a telescope this large into space," ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA's newest astronaut class begins training in Houston

Japan space tourist eyes Mariana Trench trip after ISS

CES show highlights: Robo-dogs, self-sailing boat, brain tech

CES tech fair opens under pandemic shadow

STELLAR CHEMISTRY
Gilmour Space fires up for 2022 with Australia's largest rocket engine test

Arianespace consolidates leadership in commercial market with 15 Ariane, Soyuz and Vega launches in 2021

Ride into space on Vega-C secured for FLEX and Altius

SpaceX successfully completes first launch of 2022 from Florida

STELLAR CHEMISTRY
NASA's InSight enters safe mode during regional Mars dust storm

Assessing Perseverance's Seventh Sample Collection

Perseverance set to exit Seitah area

Sol 3349: Ridges, Big and Small

STELLAR CHEMISTRY
Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

CASC plans more than 40 space launches for China in 2022

China's astronauts mark New Year with livestream from space

STELLAR CHEMISTRY
Advertising plays key role in satellite TV success, study shows

Space business: The final (profitable) frontier

Euroconsult predicts highest government space budgets in decades despite Covid

Loft Orbital extends production agreement with LeoStella

STELLAR CHEMISTRY
Mangata Networks announces funding for satellite edge computing network

Debris from failed Russian rocket falls into sea near French Polynesia

Windows that outsmart the elements

Metaverse gets touch of reality at CES

STELLAR CHEMISTRY
Arianespace to launch PLATiNO 1 and 2 on Vega and Vega C

New year's mission to start new phase of exoplanet research

Cheops reveals a rugby ball-shaped exoplanet

Elusive atmospheric molecule produced in a lab for the 1st time by UH

STELLAR CHEMISTRY
Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons

NASA's Juno Spacecraft 'Hears' Jupiter's Moon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.