. 24/7 Space News .
TIME AND SPACE
Evidence of intermediate state of matter between crystal and liquid
by Staff Writers
Moscow, Russia (SPX) Jan 20, 2021

stock illustration only

Scientists from the Joint Institute for High Temperatures Russian Academy of Sciences (JIHT RAS) and Moscow Institute of Physics and Technology (MIPT) have experimentally confirmed the presence of an intermediate phase between the crystalline and liquid states in a monolayer dusty plasma system.

The theoretical prediction of the intermediate - hexatic - phase was honoured with the Nobel Prize in Physics in 2016: the prize was awarded to Michael Kosterlitz, David Thouless and Duncan Haldane with the formulation "for theoretical discoveries of topological phase transitions and topological phases of matter."

In a scientific article in the journal Scientific Reports, the JIHT RAS scientists published their observations and detailed descriptions of experiments, during which they first observed the hexatic phase in two-dimensional structures in plasma.

The paper describes methods for accurately identifying phase transition points and presents a detailed analysis of the structural properties of such a system. The data obtained during the experiment are fully consistent with the Berezinsky-Kosterlitz-Thouless theory.

"Our design of experiment makes it possible to clearly observe a two-stage process of crystal melting and to identify the points of the phase transition "solid-hexatic phase " and "hexatic phase-liquid," said Ph.D. Elena Vasilieva, the senior researcher in Laboratory of Dusty Plasma Diagnostics, JIHT RAS.

"The long time of the experiment, sufficient to establish a stationary state of the system, in combination with precise methods of controlling the temperature of particles, made it possible to smoothly change the parameters of the system and "catch" the hexatic phase."

According to Elena Vasilieva, despite the existence of the Berezinsky-Kosterlitz-Thouless theory for more than 40 years, which predicts two-stage melting from a crystal to a liquid phase with the formation of an intermediate hexatic phase, it has not yet been possible to study these processes in laboratory plasma systems.

Two-dimensional transitions have already been observed in polymer colloids, magnetic bubbles in thin films, liquid crystals, and superconductors, but there has been no experimental evidence of two-stage melting in dusty plasmas for a long time.

"Our experiment was successful due to a number of factors. For example, we used an unconventional approach to form a monolayer dusty system, namely we used particles with a metal surface that are capable of absorbing laser radiation and converting it into the energy of their own motion.

The particle system had a long time for relaxation before recording the experimental series. In addition, a homogeneous laser beam was used to uniformly influence the structure and its precise heating," commented Oleg Petrov, the director of the Joint Institute for High Temperatures Russian Academy of Sciences.

The study of the physical properties of two-dimensional systems is of great practical importance. Such research is now rapidly developing, promising in the future new materials with desired properties and devices based on them in microelectronics, medicine for DNA sequencing, etc.

The results presented in the article were obtained with the support of the Russian Science Foundation in the framework of the project "Active Brownian motion of Coulomb particles in plasma and superfluid helium."

Research paper


Related Links
Moscow Institute Of Physics And Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
X-Rays surrounding 'Magnificent 7' may be traces of sought-after particle
Berkeley CA (SPX) Jan 19, 2021
A new study, led by a theoretical physicist at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), suggests that never-before-observed particles called axions may be the source of unexplained, high-energy X-ray emissions surrounding a group of neutron stars. First theorized in the 1970s as part of a solution to a fundamental particle physics problem, axions are expected to be produced at the core of stars, and to convert into particles of light, called photons, in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Prepping for a spacewalk to install Colka on ISS external hull

Cultivating plant growth in space

NASA Extends Exploration for Two Planetary Science Missions

European Gateway module to be built in France as Thomas Pesquet readies for second spaceflight

TIME AND SPACE
Virgin Orbit targets Sunday for LauncherOne mission from California

Cargo Dragon undocks from Station and heads for splashdown

Exotrail aims for more in orbit space mobility

China makes progress in developing rocket engines for space missions

TIME AND SPACE
Curiosity Rover reaches its 3,000th day on Mars

Frosty scenes in martian summer

Seven things to know about the NASA rover about to land on Mars

China Focus: 400 mln km within 163 days, China's Mars probe heads for red planet

TIME AND SPACE
Chinese space enterprise gears up for record-breaking 40-plus launches in 2021

China's space achievements out of this world

China's Chang'e-5 orbiter embarks on new mission to gravitationally stable spot at L1

China plans to launch four manned spacecraft in next two years

TIME AND SPACE
France to Invest $121.5Mln in Space Projects Over Next 2 Years, Macron Says

NASA, FAA Partnership Bolsters American Commercial Space Activities

Orbit Logic Leverages Blockchain for Constellation Communication over Dynamic Networks

Airbus signs multi-satellite contract with Intelsat for OneSat flexible satellites

TIME AND SPACE
Saffire Ignites New Discoveries in Space

Physicists propose a new theory to explain one dimensional quantum liquids formation

Seeing in a flash

EOS supports Texas Rocket Engineering Laboratory (TREL) to fuel additive manufacturing education

TIME AND SPACE
Astronomers finally measure polarized light from exoplanet

A rocky planet around one of our galaxy's oldest stars

Astronomers find evidence for planets shrinking over billions of years

Astronomers measure enormous planet lurking far from its star

TIME AND SPACE
Juno mission expands into the future

Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.