. 24/7 Space News .
CHIP TECH
Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
by Staff Writers
Beijing, China (SPX) Dec 13, 2018

file illustration only

It is a general consensus that understanding of the normal state is a pre-requisite for understanding the superconductivity mechanism. In conventional superconductors, superconductivity emerges from the normal state where the low energy excitations can be well described by the Fermi liquid theory.

In the normal state, there is a well-defined Fermi surface and well-defined quasiparticles on the Fermi surface. Superconductivity is realized by the instability of the Fermi surface and formation of electron Cooper pairs along the Fermi surface.

In high temperature cuprate superconductors, particularly in the underdoped region, there is no well-defined Fermi surface formed near the antinodal region and Fermi arcs or Fermi pockets are formed due to the occurrence of the pseudogap in the normal state. The electronic state near the antinodal region is highly incoherent in the normal state without formation of quasiparticles.

Such an extreme normal state electronic structure, with neither well-defined Fermi surface nor quasiparticles, has posed a challenge in understanding its underlying origin and the emergence of superconductivity from such an unusual normal state.

Between the two extreme cases of conventional superconductors and cuprate superconductors, it is intriguing to ask whether it is possible to have a scenario that superconductivity can be realized in a system that has well-defined Fermi surface but without quasiparticles in the normal state. If there is such a case, how about its superconducting properties and superconductivity mechanism?

The iron-based superconductors show some similarities and differences when compared with cuprates, and many discussions have been focused on their non-Fermi liquid normal state. However, direct spectroscopic evidence of the non-Fermi liquid normal state behaviors is still lacking.

Recently, a research group led by Prof. Xingjiang Zhou from Institute of Physics, Chinese Academy of Sciences, has shown clear electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor and established a new superconducting system where there is a well-defined Fermi surface but no quasiparticles in the normal state.

They carried out high resolution laser-based angle-resolved photoemission (ARPES) measurements on a prototypical iron-based superconductor, the optimally-doped (Ba0.6K0.4)Fe2As2.

First, they found that the superconducting gap is Fermi surface dependent along two hole-like pockets around the Brillouin zone center in (Ba0.6K0.4)Fe2As2 which is consistent with ARPES results by helium lamp and synchrotron radiation light sources but in contradiction with a previous laser-based ARPES results.

This result has solved a long-standing controversy about the superconducting gap structure in this prototypical iron-based superconductor. Second, they found that, while sharp superconducting coherence peaks emerge in the superconducting state, the normal state becomes fully incoherent with no quasiparticles along a well-defined Fermi surface.

This has provided direct spectroscopic evidence that the normal state is a non-Fermi liquid. It has also established that (Ba0.6K0.4)Fe2As2 superconductor is a new system where its normal state has a well-defined Fermi surface but without well-defined quasiparticles along the Fermi surface.

Third, the superconducting gap exhibits an unusual behavior that it is nearly constant in the entire superconducting state but drops abruptly to zero at the superconducting transition temperature; this is inconsistent with the conventional BCS picture.

The spectral weight near the Fermi level is not conserved when the sample evolves from the normal state into the superconducting state. These results will provide key insights in understanding the superconductivity mechanism in iron-based superconductors, and in particular, how the coherent superconducting state can emerge out of the fully incoherent normal state in unconventional superconductors.

Research Report: Emergence of Superconductivity from Fully Incoherent Normal State in an Iron-Based Superconductor


Related Links
Science China Press
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Two-dimensional materials skip the energy barrier by growing one row at a time
Richland WA (SPX) Dec 12, 2018
A new collaborative study led by a research team at the Department of Energy's Pacific Northwest National Laboratory and University of California, Los Angeles could provide engineers new design rules for creating microelectronics, membranes, and tissues, and open up better production methods for new materials. At the same time, the research, published in the journal Science, helps uphold a scientific theory that has remained unproven for over a century. Just as children follow a rule to line up si ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
George H.W. Bush's overlooked legacy in space exploration

UConn Research Project Heading to International Space Station

NASA sends new research, hardware to Space Station on SpaceX mission

PoSSUM scientist-astronaut candidates test novel space suits and biometric monitoring systems

CHIP TECH
Tesla CEO Elon Musk taunts US financial regulatory agency

Rocket Lab prepares to launch historic CubeSat mission for NASA

Arianespace Orbits GSAT-11 and Geo-Kompsat-2A for India and South Korea

SpaceX launches cargo, but fails to land rocket

CHIP TECH
InSight's robotic arm ready for some lifting on Mars

NASA's InSight lander 'hears' wind on Mars

NASA's Mars InSight Flexes Its Arm

Mars 2020 rover mission camera system 'Mastcam-Z' testing begins at ASU

CHIP TECH
Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

CHIP TECH
CAT rules in favour of Ofcom's EAN authorisation decision

Fleet Space Technologies' Centauri launched aboard SpaceX Falcon 9

Roscosmos Targeted by Info Attack to Hamper Revival of Space Industry in Russia

SAS Signs Distribution Agreement with GlobalSat Group

CHIP TECH
Gaming firm settles VR lawsuit with Facebook-owned Oculus

Green production of chemicals for industry

Scientists discover a material breaking modern chemistry laws

FEFU young scientists developed unique method to calculate transparent materials porosity

CHIP TECH
Life in Deep Earth totals 15 to 23 billion tons of carbon

An exoplanet loses its atmosphere in the form of a tail

Unknown treasure trove of planets found hiding in dust

Radio Search for Artificial Emissions from 'Oumuamua

CHIP TECH
Radio JOVE From NASA: Tuning In to Your Local Celestial Radio Show

The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning

Encouraging prospects for moon hunters

Evidence for ancient glaciation on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.