. 24/7 Space News .
CHIP TECH
Electron and nuclear spin qubits 2D array opens new frontier in quantum science
by Staff Writers
West Lafayette IN (SPX) Aug 25, 2022

Researchers used light and electron spin qubits to control nuclear spin in a 2D material, opening a new frontier in quantum science and technology.

By using photons and electron spin qubits to control nuclear spins in a two-dimensional material, researchers at Purdue University have opened a new frontier in quantum science and technology, enabling applications like atomic-scale nuclear magnetic resonance spectroscopy, and to read and write quantum information with nuclear spins in 2D materials.

As published Monday (Aug. 15) in Nature Materials, the research team used electron spin qubits as atomic-scale sensors, and also to effect the first experimental control of nuclear spin qubits in ultrathin hexagonal boron nitride.

"This is the first work showing optical initialization and coherent control of nuclear spins in 2D materials," said corresponding author Tongcang Li, a Purdue associate professor of physics and astronomy and electrical and computer engineering, and member of the Purdue Quantum Science and Engineering Institute.

"Now we can use light to initialize nuclear spins and with that control, we can write and read quantum information with nuclear spins in 2D materials. This method can have many different applications in quantum memory, quantum sensing, and quantum simulation."

Quantum technology depends on the qubit, which is the quantum version of a classical computer bit. It is often built with an atom, subatomic particle, or photon instead of a silicon transistor. In an electron or nuclear spin qubit, the familiar binary "0" or "1" state of a classical computer bit is represented by spin, a property that is loosely analogous to magnetic polarity - meaning the spin is sensitive to an electromagnetic field. To perform any task, the spin must first be controlled and coherent, or durable.

The spin qubit can then be used as a sensor, probing, for example, the structure of a protein, or the temperature of a target with nanoscale resolution. Electrons trapped in the defects of 3D diamond crystals have produced imaging and sensing resolution in the 10-100 nanometer range.

But qubits embedded in single-layer, or 2D materials, can get closer to a target sample, offering even higher resolution and stronger signal. Paving the way to that goal, the first electron spin qubit in hexagonal boron nitride, which can exist in a single layer, was built in 2019 by removing a boron atom from the lattice of atoms and trapping an electron in its place. So-called boron vacancy electron spin qubits also offered a tantalizing path to controlling the nuclear spin of the nitrogen atoms surrounding each electron spin qubit in the lattice.

In this work, Li and his team established an interface between photons and nuclear spins in ultrathin hexagonal boron nitrides.

The nuclear spins can be optically initialized - set to a known spin - via the surrounding electron spin qubits. Once initialized, a radio frequency can be used to change the nuclear spin qubit, essentially "writing" information, or to measure changes in the nuclear spin qubits, or "read" information. Their method harnesses three nitrogen nuclei at a time, with more than 30 times longer coherence times than those of electron qubits at room temperature. And the 2D material can be layered directly onto another material, creating a built-in sensor.

"A 2D nuclear spin lattice will be suitable for large-scale quantum simulation," Li said. "It can work at higher temperatures than superconducting qubits."

To control a nuclear spin qubit, researchers began by removing a boron atom from the lattice and replacing it with an electron. The electron now sits in the center of three nitrogen atoms. At this point, each nitrogen nucleus is in a random spin state, which may be -1, 0, or +1.

Next, the electron is pumped to a spin-state of 0 with laser light, which has a negligible effect on the spin of the nitrogen nucleus.

Finally, a hyperfine interaction between the excited electron and the three surrounding nitrogen nuclei forces a change in the spin of the nucleus. When the cycle is repeated multiple times, the spin of the nucleus reaches the +1 state, where it remains regardless of repeated interactions. With all three nuclei set to the +1 state, they can be used as a trio of qubits.

At Purdue, Li was joined by Xingyu Gao, Sumukh Vaidya, Peng Ju, Boyang Jiang, Zhujing Xu, Andres E. Llacsahuanga Allcca, Kunhong Shen, Sunil A. Bhave, and Yong P. Chen, as well as collaborators Kejun Li and Yuan Ping at the University of California, Santa Cruz, and Takashi Taniguchi and Kenji Watanabe at the National Institute for Materials Science in Japan.

"Nuclear spin polarization and control in hexagonal boron nitride" was published with support from Purdue Quantum Science and Engineering Institute, DARPA, National Science Foundation, U.S. Department of Energy, Office of Naval Research, Tohoku AIMR and FriDUO program, and JSPS KAKENHI.

Research Report:Nuclear spin polarization and control in hexagonal boron nitride


Related Links
Purdue University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
MIT team reports giant response of semiconductors to light
Boston MA (SPX) Aug 25, 2022
In an example of the adage "everything old is new again," MIT engineers report a new discovery in semiconductors, well-known materials that have been the focus of intense study for over 100 years thanks to their many applications in electronic devices. The team found that these important materials not only become much stiffer in response to light, but the effect is reversible when the light is turned off. The engineers also explain what is happening at the atomic scale, and show how the effect can ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Voyager logs 45 years in space as NASA's longest mission to date

45 years after launch, NASA's Voyager probes still blazing trails billions of miles away

Track NASA's Artemis I mission in real time

Russian spacewalk cut short due to issue with suit

CHIP TECH
Glenn's legacy of testing spacecraft spans from Apollo to Artemis

NASA calls off Monday launch of Moon rocket

Northrop Grumman's boosters ready to launch Artemis to Luna

NASA in good position for Monday launch of Artemis I

CHIP TECH
New water map of Mars will prove invaluable for future exploration

Perseverance Soon Heads to 'Enchanted Lake'

How Martian ionospheric dispersion effected on SAR imaging

Harvesting resources on Mars with plasmas

CHIP TECH
103rd successful rocket launch breaks record

Chinese space-tracking ship docks at Sri Lanka's Hambantota port

Shenzhou XIV astronauts to conduct their first spacewalk in coming days

Harvest from heavenly breeding

CHIP TECH
Introducing Huginn

NASA scientists study how to remove planetary photobombers

Thailand's first comsat by mu Space Corp passes GISTDA tests

On the front lines of space innovation

CHIP TECH
Virtual reality revives Iraq's war-ravaged heritage

PPE can be recycled to make stronger concrete

By design: from waste to next-gen carbon fiber

Researchers design new inks for 3D-printable wearable bioelectronics

CHIP TECH
New study examines how many moons an earth-mass planet could host

Case solved: missing carbon monoxide was hiding in the ice

Breaking in a new planet

Scientists say exoplanet 100 light years from Earth may be covered with deep ocean

CHIP TECH
Underwater snow gives clues about Europa's icy shell

Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.