24/7 Space News
TECH SPACE
Eco-friendly rare earth element separation: A bioinspired solution to an industry challenge
illustration only
Eco-friendly rare earth element separation: A bioinspired solution to an industry challenge
by Melissa Pappas for UPenn News
Philadelphia PA (SPX) Mar 18, 2025

From smartphones to wind turbines, rare earth elements (REEs) are an essential part of the hardware in many advanced technologies. These elements, which include the lanthanides along with scandium and yttrium, are the backbone of industries that rely on unique properties such as luminescence, magnetism and catalytic ability. In fact, as our world moves toward more sustainable energy solutions and increasingly sophisticated technologies, the demand for REEs is projected to grow substantially.

There's one catch, however: REEs are difficult to extract and even harder to separate. These elements, despite their name, aren't actually rare in terms of abundance. What makes them "rare" is their dispersion throughout the Earth's crust and their chemical similarities, which make them incredibly challenging to isolate from one another. Current separation methods - largely reliant on toxic solvents like kerosene - are not only inefficient, but also harmful to people and the environment. Additionally, while the U.S. once dominated REE mining and production, environmental restrictions on current separation methods have limited domestic production.

Kathleen Stebe, Richer and Elizabeth Goodwin Professor in Chemical and Biomolecular Engineering (CBE), is tackling this challenge head-on with a collaborative group of researchers across five institutions under the support of a grant from the Department of Energy. Stebe is leading a groundbreaking research initiative that aims to create an eco-friendly, bioinspired process for separating REEs that would also avoid shipping semi-processed REEs to other countries for purification.

"Current separation methods use kerosene and extractants-molecules that bind the REE cations, a positively charged particle, that create issues, both environmentally and in terms of efficiency," says Stebe. "The separation process is not selective enough to efficiently separate lanthanides, meaning that it has to be repeated many times to achieve REEs in sufficient purity. The whole method is cumbersome and creates unnecessary waste."

Stebe, along with a team of researchers from Penn, the City College of New York, the University of Illinois Chicago, Northwestern University and the University of Chicago, look to human biology to find the molecule best suited for the job of separation: peptides.

Bioinspired Interfaces: Drawing on Nature's Expertise

In nature, organisms have evolved proteins that selectively bind to specific ions, despite their similar properties. A perfect example of this is calcium-binding proteins in the human body, which can distinguish between calcium and magnesium ions, even though both have the same charge.

"We are applying this concept to create a similar level of selectivity for rare earth elements," says collaborator E. James Petersson, Professor of Chemistry, Biochemistry and Biophysics at Penn's School of Arts and Sciences. "By using peptide-based molecules - specifically, a truncated version of the EF-hand motif, which is naturally found in calcium-binding proteins - we are designing molecules that can selectively bind to specific rare earth elements."

This EF-hand motif refers to the structure and mechanism through which these naturally occurring proteins and peptides are able to differentiate between two very similar molecules.

"The structure resembles a hand," says Stebe, "and each 'finger' of the hand is laden with a carboxyl or carbonyl group that binds to cations floating around in solution. It's a beautiful and complex structure that can recognize the nuanced and subtle differences between two nearly indistinct cations, and then capture and hold onto whichever cation it is 'looking' for. This is extremely important for separating REEs, which differ in size by only one-tenth of an Angstrom."

In the team's recent study published in PNAS, they found that EF-hand-containing peptides could bind to the peptide-cation complex and capture it at the aqueous-air interface. The vision includes using bubbles to separate specific lanthanides from a mixture. Once bound to the peptides in an aqueous solution, the REEs will rise to the surface, where they are trapped in a foam at the water-air interface, a separation technique called ion foam flotation.

"My primary area of research is in interfacial science, studying the adsorption of surface-active molecules - surfactants and soap molecules - to the air-water interface," says co-author Charles Maldarelli, Professor of Chemical Engineering at The City College of New York. "This study gave me the opportunity to apply my expertise to the adsorption of peptides and peptide-metal complexes at the interface."

Felipe Jimenez-Angeles, Research Associate Professor at Northwestern University, performed many of the molecular dynamics simulations in this study. "I am fascinated that these peptides can separate ions that only differ by a few tenths of an Angstrom in diameter via the differences in the electrostatic forces at the atomic scale. The water-soluble peptide reconfigures when it captures the ion and becomes insoluble in water, resulting in its adsorption to the air-water interface."

The team's next steps in this research will be investigating how to scale this process, allowing them to isolate target REEs and collect them at usable quantities in a way that is much more efficient and environmentally friendly.

The Collaborative Effort Behind the Innovation

What makes this project truly innovative is the collaboration across multiple universities and disciplines. Each institution brings unique expertise to the project, from synthetic chemistry to surface material properties, and even X-ray experiments.

"This is really the first time my lab has used biology to solve chemistry problems," says Petersson. "Normally, we focus on creating chemical probes to study biology, often looking at neurodegenerative disorders like Parkinson's disease. But the experience of working on this project has inspired me to explore other biological approaches to chemistry, including adapting disease-related proteins for applications in other fields like energy and sustainability."

"I have long been interested in molecular interface interactions," adds Ivan Dmochowski, Professor of Chemistry in Penn's School of Arts and Sciences. "As an undergraduate, I made molecules that react with the surface of glass and gold, and studied the resulting monolayers that formed. Later I started looking at proteins at the air-water interface."

Other key senior faculty involved in the research include Monica Olvera de la Cruz from Northwestern University, Raymond Tu from CCNY, Mark Schloassman from University of Illinois at Chicago, and Daeyeon Lee, Ravi Radhakrishnan and Cesar de la Fuente at the University of Pennsylvania.

"It has been rewarding to both contribute to and learn from this effort," continues Domchowski. "To solve really challenging, societally relevant problems in 2025, we will need a wide range of technical expertise, and I am excited to continue working with this team of collaborators to do that."

Looking Ahead: The Future of Rare Earth Element Recovery

As Stebe's team continues their work, they are focused on fine-tuning the selectivity of the peptides and optimizing the process for bulk production. Their next steps include using specialized peptides designed by Petersson to enhance the fluorescence of the system, allowing for more precise tracking of the binding events. They also plan to use physics data to inform additional opportunities for improved specificity and look into developing new, synthetic molecules to make this method even more cost-effective and environmentally friendly.

"This is just the beginning," says Stebe. "We have a lot of exciting new directions to explore, from using synthetic molecules instead of peptides to creating even more selective binding structures. The potential impact of this work goes far beyond just rare earth elements - it could revolutionize the way we approach material separation across many industries."

Related Links
University of Pennsylvania School of Engineering and Applied Science
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Colombian influencer puts the pizzazz into recycling
Bogota (AFP) Mar 18, 2025
Colombian influencer Sara Samaniego braids her long straight hair, checks her make-up in a mirror, places her phone in the center of a ring light and flashes a big smile for the camera. "Hola mis recicla-amores! (Hello my recycling loves)," the 32-year-old, who is on a mission to teach Colombians how to sort their waste, says to greet her half-a-million Instagram followers. Samaniego, who wears blue overalls and a baseball cap on backwards as part of her "Marce, la recicladora" (Marce, the recyc ... read more

TECH SPACE
Safely back on Earth, once-stranded US astronauts ready to fly again

SpaceX to launch private astronauts on first crewed polar orbit

SpaceX's Crew 11 to space station named: 2 from NASA, plus Russia, Japan

US imposes trade restrictions on dozens of entities with eye on China

TECH SPACE
SpaceX launches private astronauts on first crewed polar orbit

ULA Vulcan earns green light for national security launches

The Sky's Not the Limit for NASA's Next-Gen Landing Navigation Tech

European orbital rocket crashes after launch

TECH SPACE
Martian dust may endanger astronaut health during surface missions

ExoMars rover to land on Mars aboard European-built platform

Visiting Mars on the Way to the Outer Solar System

Sols 4488-4490: Progress Through the Ankle-Breaking Terrain

TECH SPACE
Space station advances muscle and semiconductor science

China's Galactic Energy expands Yunyao satellite network with successful launch

Shenzhou XIX astronauts complete third spacewalk outside Tiangong

Hong Kong spearheads lunar robotics initiative for national space program

TECH SPACE
SpaceX launches another 28 satellites into orbit from Florida

SKY Perfect JSAT contracts Thales Alenia Space for JSAT 32 satellite project

Globalstar launches advanced control center in Louisiana to boost satellite operations

Space Norway signs Intelsat as lead broadcaster on THOR 8 satellite

TECH SPACE
Eco-friendly rare earth element separation: A bioinspired solution to an industry challenge

Kazakhstan discovers its 'largest' rare earths deposit

Scientists build novel quantum material from two extreme compounds

Metamaterials enable ultra-efficient mechanical energy storage

TECH SPACE
Incredible Journey of Pristine Meteorite Reveals Survival Secrets

How calcium may have guided early molecular directionality

Atmospheres of new planets might have unexpected mixtures of hydrogen and water

China sends regenerative flatworms to orbit for biological research

TECH SPACE
NASA's Hubble Telescope May Have Uncovered a Triple System in the Kuiper Belt

NASA's Europa Clipper Leverages Mars for Critical Gravity Assist

Oort cloud resembles a galaxy, new study finds

The PI's Perspective: A New Mission Update for the New Year

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.