. 24/7 Space News .
EARLY EARTH
Early Earth's hot mantle may have led to Archean 'water world'
by Staff Writers
Washington DC (SPX) Mar 31, 2021

An artist's rendering of Earth during the Archean eon, with a hazy atmosphere, few landmasses and a global ocean. Credit: Alec Brenner, Harvard University.

A vast global ocean may have covered early Earth during the early Archean eon, 4 to 3.2 billion years ago, a side effect of having a hotter mantle than today, according to new research.

The new findings challenge earlier assumptions that the size of the Earth's global ocean has remained constant over time and offer clues to how its size may have changed throughout geologic time, according to the study's authors.

Most of Earth's surface water exists in the oceans. But there is a second reservoir of water deep in Earth's interior, in the form of hydrogen and oxygen attached to minerals in the mantle.

A new study in AGU Advances, which publishes high-impact, open-access research and commentary across the Earth and space sciences, estimates how much water the mantle potentially could hold today and how much water it could have stored in the past.

The findings suggest that, since early Earth was hotter than it is today, its mantle may have contained less water because mantle minerals hold onto less water at higher temperatures. Assuming that the mantle currently has more than 0.3-0.8 times the mass of the ocean, a larger surface ocean might have existed during the early Archean. At that time, the mantle was about 1,900-3,000 degrees Kelvin (2,960-4,940 degrees Fahrenheit), compared to 1,600-2,600 degrees Kelvin (2,420-4,220 degrees Fahrenheit) today.

If early Earth had a larger ocean than today, that could have altered the composition of the early atmosphere and reduced how much sunlight was reflected back into space, according to the authors. These factors would have affected the climate and the habitat that supported the first life on Earth.

"It's sometimes easy to forget that the deep interior of a planet is actually important to what's going on with the surface," said Rebecca Fischer, a mineral physicist at Harvard University and co-author of the new study. "If the mantle can only hold so much water, it's got to go somewhere else, so what's going on thousands of kilometers below the surface can have pretty big implications."

Earth's sea level has remained fairly constant during the last 541 million years. Sea levels from earlier in Earth's history are more challenging to estimate, however, because little evidence has survived from the Archean eon. Over geologic time, water can move from the surface ocean to the interior through plate tectonics, but the size of that water flux is not well understood. Because of this lack of information, scientists had assumed the global ocean size remained constant over geologic time.

In the new study, co-author Junjie Dong, a mineral physicist at Harvard University, developed a model to estimate the total amount of water that Earth's mantle could potentially store based on its temperature. He incorporated existing data on how much water different mantle minerals can store and considered which of these 23 minerals would have occurred at different depths and times in Earth's past. He and his co-authors then related those storage estimates to the volume of the surface ocean as Earth cooled.

Jun Korenaga, a geophysicist at Yale University who was not involved in the research, said this is the first time scientists have linked mineral physics data on water storage in the mantle to ocean size. "This connection has never been raised in the past," he said.

Dong and Fischer point out that their estimates of the mantle's water storage capacity carry a lot of uncertainty. For example, scientists don't fully understand how much water can be stored in bridgmanite, the main mineral in the mantle.

The new findings shed light on how the global ocean may have changed over time and can help scientists better understand the water cycles on Earth and other planets, which could be valuable for understanding where life can evolve.

"It is definitely useful to know something quantitative about the evolution of the global water budget," said Suzan van der Lee, a seismologist at Northwestern University who did not participate in the study. "I think this is important for nitty-gritty seismologists like myself, who do imaging of current mantle structure and estimate its water content, but it's also important for people hunting for water-bearing exoplanets and asking about the origins of where our water came from."

Dong and Fischer are now using the same approach to calculate how much water may be held inside Mars.

"Today, Mars looks very cold and dry," Dong said. "But a lot of geochemical and geomorphological evidence suggests that early Mars might have contained some water on the surface - and even a small ocean - so there's a lot of interest in understanding the water cycle on Mars."

Research paper


Related Links
AGU
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Scientists stunned to discover plants beneath mile-deep Greenland ice
Burlington VT (SPX) Mar 17, 2021
In 1966, US Army scientists drilled down through nearly a mile of ice in northwestern Greenland - and pulled up a fifteen-foot-long tube of dirt from the bottom. Then this frozen sediment was lost in a freezer for decades. It was accidentally rediscovered in 2017. In 2019, University of Vermont scientist Andrew Christ looked at it through his microscope - and couldn't believe what he was seeing: twigs and leaves instead of just sand and rock. That suggested that the ice was gone in the recent geol ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Reports: Biden to tap Bill Nelson as NASA administrator

Russia's Soyuz MS-17 spacecraft re-docks on ISS

Biden nominates former Democratic senator as NASA chief

Galileo will help Lunar Pathfinder navigate around Moon

EARLY EARTH
SpaceX Starship test flight fails

SpaceX aims to nail landing of Starship on fourth attempt

FAA streamlined launch and reentry rule takes effect

All 38 satellites launched on Russia's Soyuz reach orbit: Roscosmos

EARLY EARTH
For some scientists, Mars 2020 is a mission of perseverance

Swiss kids suit up for 'Mission to Mars'

Is there life on mars today and where

Mars helicopter Ingenuity could usher in new era of exploration

EARLY EARTH
China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

EARLY EARTH
Eutelsat selects Airbus for key orbital slot with EUTELSAT 36D satellite

Kymeta Interoperability with Kepler LEO sats promises powerful connectivity of the Kymeta u8 Terminal

UK space sector gets funding boost to support international innovation

Kepler Communications reports successful Launch of two GEN1 satellites

EARLY EARTH
Tires turned into graphene that makes stronger concrete

New York Times digital 'NFT' article sells for $563,000

Robot security dogs start guarding Tyndall Air Force Base

Illegal mining surges on Yanomami indigenous land

EARLY EARTH
ASU scientists determine origin of strange interstellar object

SwRI researcher theorizes worlds with underground oceans support, conceal life

There might be many planets with water-rich atmospheres

How the habitability of exoplanets is influenced by their rocks

EARLY EARTH
SwRI scientists help identify the first stratospheric winds measured on Jupiter

Jupiter's Great Red Spot feeds on smaller storms

Juno reveals dark origins of one of Jupiter's grand light shows

SwRI scientists image a bright meteoroid explosion in Jupiter's atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.