. 24/7 Space News .
ENERGY TECH
Development of high-time-resolution measurement of electron temperature and density in a magnetically confined plasma
by Staff Writers
Tokyo, Japan (SPX) Oct 19, 2022

Electron temperature and density measurement of plasma by Thomson scattering

Fusion power generation uses the energy generated by fusion reactions in high-temperature plasma. To achieve this, it is necessary to precisely measure the fast-changing high-temperature plasma to understand and control the physical phenomena.

A research group from the National Institute for Fusion Science in Japan and the University of Wisconsin in the United States have developed a high-performance laser device and succeeded in advancing a method to measure electron temperature and density in plasma at a world record speed of 20,000 times per second for almost 70 spatial points, more than 600 times faster than conventional methods. As a result, it is possible to study fast changes in plasma in detail, which has been difficult until now.

Galileo Galilei, a scientist active in Italy from the late 16th century, proposed the heliocentric theory through astronomical observations and scientific analysis based on them. The instrument that greatly contributed to his research was the telescope, the most advanced technology of the time. Galileo was convinced of the heliocentric theory, through detailed observation and study of the movement of stars, using this high-performance instrument. He also improved the performance of his telescope and discovered craters on the moon and the moons of Jupiter. It can be said that high-performance measurement technology was indispensable to Galileo's profound insights and new astronomical discoveries. Advanced measurement technology is similarly critical to fusion research.

In the Large Helical Device (LHD), research is conducted to confine the high-temperature plasma necessary for fusion power generation in a magnetic field. Plasma is a state in which electrons and ions are scattered and moving around, and the higher the temperature, the faster they move. To measure the temperature of these electrons, a technique called "Thomson scattering measurement" is used.

In this technique, a powerful laser beam is injected into the plasma and the "scattered light" generated when it strikes the electrons is measured. The scattered light changes to a different color to the incident laser light, due to the Doppler effect. Since this color change corresponds to the speed of the electrons, we can determine their temperature from the color of the scattered light and the electron density from its brightness.

The electron temperature and density of a plasma vary from place to place and change extremely fast with time. In order to accurately determine the plasma state, the Thomson scattering measurement system must have the spatial resolution to measure the spatial distribution of electron temperature and density as finely as possible, and the temporal resolution to measure changes in time as quickly as possible. The LHD Thomson scattering system simultaneously measures electron temperature and density at 144 points in the plasma.

This is the world's top-level spatial resolution. Time variation is measured by repeatedly injecting pulses of laser light into the plasma, but previously the time resolution of the LHD Thomson scattering system was only 30 times per second. To deeply understand the physical phenomena we have seen and to make new discoveries, it has been necessary to improve the time resolution. In particular, faster measurement speeds enable detailed measurements of transient phenomena that occur in plasmas, thus providing a powerful method for understanding and controlling such phenomena.

Associate Professor Ryo Yasuhara, Assistant Professor Hisamichi Funaba, and Assistant Professor Hiyori Uehara of the National Institute for Fusion Science, together with Professor Daniel J. den Hartog of the University of Wisconsin, have developed a Thomson scattering measurement system capable of measuring at up to 20 kHz (20,000 times per second). The heart of the new measurement system is a laser device that can generate intense light many times over at high speed.

In this laser system, a laser medium (in the case of this research, a solid medium) is given optical energy (excitation light) to generate a powerful laser beam. However, because the laser beam generation efficiency is not 100%, the energy that is not converted into laser light becomes heat. Therefore, heat generation in the solid medium becomes a problem at high laser repetition rates. When a temperature difference is created in the medium due to heat generation, a thermo-optic effect appears, in which light cannot travel straight ahead because the refractive index of light differs from place to place. The thermo-optic effect can cause a reduction in the output power of the laser light and damage to the solid medium.

The research group avoided the problem of thermo-optic effects by applying energy to the medium and extracting the laser pulse from the medium multiple times in the extremely short time period of 5 ms, before a temperature difference occurred in the medium. As a result, they succeeded in developing a laser capable of a high-speed repetition rate of 20 kHz.

This high-performance laser, a newly developed high-speed data acquisition system, and advanced analysis methods developed so far have enabled them to achieve a Thomson scattering measurement system capable of calculating at a world record speed of 20 kHz, more than 600 times faster than conventional systems.

Associate Professor Yasuhara says, "Just as Galileo achieved important astronomical discoveries with the use of a high-performance telescope, I would like to further develop fusion research by introducing fast electron temperature and density profiles. We expect that this will lead to a more precise understanding of physical phenomena that have been difficult to observe in the past, such as fueling into plasmas and transient phenomena caused by turbulence."

A paper summarizing some of the results of this research was published online in Scientific Reports on September 6. The professor will also give an oral presentation at the Laser Congress 2022 (hosted by Optica), an international conference on advanced laser research, to be held in Barcelona, Spain, from December 11 to 15, 2022.

Research Report:Electron temperature and density measurement by Thomson scattering with a high repetition rate laser of 20 kHz on LHD


Related Links
National Institute for Fusion Science
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
DOE announces $47 million for research at tokamak and spherical tokamak facilities
Washington DC (SPX) Oct 17, 2022
the U.S. Department of Energy (DOE) awarded $47 million to U.S. scientists conducting experimental research in fusion energy science at tokamak and spherical tokamak facilities in the U.S. and around the globe. The awards support research that aims to close gaps in the science and technology basis for the tokamak approach to fusion energy. These awards will help support the Biden Administration's decadal vision to accelerate fusion as a clean energy technology. Fusion energy research seeks t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
NASA Crew-4 astronauts safely splash down in Atlantic

Eagle-designed space drones target in-orbit construction

Crew-4 astronauts splash down after 170 days in space

World's first space tourist plans new flight to Moon with SpaceX

ENERGY TECH
Celebrating committed orders for over 200 Astra spacecraft engines

Relativity Space to operate major rocket engine test facilities at NASA

Virgin Orbit and Luxembourg sign agreement to advance allied responsive space capabilities across Europe

The UK is about to have its first space launch

ENERGY TECH
Packing up at the Canaima drill site: Sols 3626-3627

Life may have thrived on early Mars, until it drove climate change that caused its demise

Things that go bump in the night on Mars!

Sols 3621-3622: Planetary Power Puzzle

ENERGY TECH
Mengtian space lab fueled ahead of upcoming launch

Tiangong space station marks key step in assembly

China begins search for fourth astronaut generation

China launches multiple satellites in back to back launches

ENERGY TECH
Beyond Gravity to supply power electronics for Loft Orbital's satellites

Phase Four unveils game changing engine for LEO constellations

Viasat and Inmarsat will work with CMA to demonstrate customer benefits of proposed transaction

First Eurostar Neo satellite launched

ENERGY TECH
Greening global economy brings dependence on critical minerals

Imerys to open lithium mine in France

Reprogrammable materials selectively self-assemble

Argonne lays the groundwork for its next-generation supercomputer

ENERGY TECH
Blue Skies Space satellite will monitor how energy released by stars impacts exoplanet habitability

Heaviest element yet detected in an exoplanet atmosphere

Broccoli gas: A better way to find life in space

JPL developing more tools to help search for life in deep space

ENERGY TECH
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.