. 24/7 Space News .
ENERGY TECH
Denmark's largest battery - one step closer to storing green power in stones
by Staff Writers
Aarhus, Denmark (SPX) May 01, 2021

When there is a surplus of electricity from wind or solar, the energy storage is charged. This is done by a system of compressors and turbines pumping heat energy from one or more storage tanks filled with cool stones to a corresponding number of storage tanks filled with hot stones. This makes the stones in the cold tanks very cold, while it gets very hot in the hot tanks, up to 600 degrees. The heat can be stored in the stones for many days. When the power is needed again, the process runs the opposite way, so that the stones in the hot tanks get colder, while they get hotter in the cold tanks.

Pea sized stones heated to 600?C in large, insulated steel tanks are at the heart of a new innovation project aiming to make a breakthrough in the storage of intermittent wind and solar electricity.

The technology, which stores electrical energy as heat in stones, is called GridScale, and could become a cheap and efficient alternative to storing power from solar and wind in lithium-based batteries. While lithium batteries are only cost-effective for the supply of energy for short periods of up to four hours, a GridScale electricity storage system will cost effectively support electricity supply for longer periods - up to about a week.

"The only real challenge with establishing 100 per cent renewable electricity supply is that we can't save the electricity generated during windy and sunny weather for use at a later time. Demand and production do not follow the same pattern. There are not yet commercial solutions to this problem, but we hope to be able to deliver this with our GridScale energy storage system," says Henrik Stiesdal, founder of the climate technology company Stiesdal Storage Technologies, which is behind the technology.

In brief, the GridScale technology is about heating and cooling basalt crushed to tiny, pea-sized stones in one or more sets of insulated steel tanks. The storage facility is charged through a system of compressors and turbines, which pumps heat energy from one or more storage tanks filled with cool stones to a similar number of storage tanks filled with hot stones, when there is surplus power from wind or the sun.

This means the stones in the cold tanks become very cold, while they become very hot in the hot tanks; in fact up to 600oC. The heat can be stored in the stones for many days, and the number of sets of stone-filled tanks can be varied, depending on the length of storage time required.

When there is demand for electricity again, the process reverses, so the stones in the hot tanks become colder while they become warmer in the cold tanks. The system is based on an inexpensive storage material and mature, well-known technology for charging and discharging.

"Basalt is a cheap and sustainable material that can store large amounts of energy in small spaces, and that can withstand countless charges and discharges of the storage facility. We are now developing a prototype for the storage technology to demonstrate the way forward in solving the problem of storing renewable energy - one of the biggest challenges to the development of sustainable energy worldwide," says Ole Alm, head of development at the energy group Andel, which is also part of the project.

The GridScale prototype will be the largest storage facility in the Danish electricity system, and a major challenge will be to make the storage flexibility available on the electricity markets in a way that provides the best possible value. Consequently, this will also be part of the project.

The precise location of the prototype storage facility has yet to be decided. However, it will definitely be in the eastern part of Denmark in south or west Zealand or on Lolland-Falster, where production from new large PV units in particular is growing faster than consumption can keep up.

The full name of the innovation project is 'GridScale - cost-effective large-scale electricity storage', and it will run for three years with a total budget of DKK 35 million (EUR 4.7 million). The project is being funded with DKK 21 million (EUR 2.8 million) from the Energy Technology Development and Demonstration Program (EUDP).

In addition to the companies Stiesdal and Andel, the partner group comprises Aarhus University (AU), the Technical University of Denmark (DTU), Welcon, BWSC (Burmeister Wain Scandinavian Contractor), Energi Danmark and Energy Cluster Denmark.

The partners will provide an energy system analysis and design optimisation for a stone storage facility as well as optimize the technical concepts and mature the GridScale technology to a ready-to-market scalable solution.

For example, the European energy system model developed by AU will be combined with the model for optimising turbines developed by DTU to gain insight into the potential role of the stone storage facility in a European context and to optimise the design:

"The transition to renewable energy changes the way the energy system works - simply because wind and solar energy are not necessarily produced when we need it. Therefore, we need to find out how the technical design can best be adapted to the energy system and in which countries and when in the green transition the technology has the greatest value. We will look to identify the combination of energy technologies that will provide the greatest value for the storage solution. I think that stone storage technology has a huge potential in many places around the world and could be of great advantage in the green transition," says Associate Professor Gorm Bruun Andresen from the Department of Mechanical and Production Engineering at Aarhus University.


Related Links
Aarhus University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Hybrid material moves next-generation transport fuel cells closer
Hiroshima, Japan (SPX) Apr 26, 2021
Protons are the next big thing when it comes to fuel cell technology. The subatomic exchange produces power on a scale that challenges contemporary solid-state fuel cell technology, used to help power space shuttles. To realize the proton-based technology sooner, an international team of researchers have developed a hybrid material that effectively transports protons at high temperatures and humidity - two major challenges in past attempts. The results were published on April 19 in ACS Applied Mat ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Space tourism - 20 years in the making - is finally ready for launch

China wants new space station to be more international

China steps on protecting technology 'fall short': USTR

Top Things to Know about Space Station Crew Handovers

ENERGY TECH
NASA continues RS-25 engine testing for future Artemis missions

Astronauts leave ISS, begin return journey to Earth on SpaceX craft

Jacobs and NASA begin processing of SLS Core Stage at Cape

China plans four Tiangong Space Station launches in 2021

ENERGY TECH
NASA extends Mars helicopter mission to assist rover

How Zhurong will attempt to touch down on the red planet

Mars Ingenuity helicopter given new scouting mission

Zhurong on course for historic journey

ENERGY TECH
China launches space station core module Tianhe

Core capsule launched into orbit

Mars mission team prepares for its toughest challenge

China launches first module for new space station

ENERGY TECH
Lithuania to become ESA Associate Member state

Private firms expected to help build space station

SpaceX successfully launches into space carrying 60 more Starlink satellites

Spacepath Communications to power new satellite teleport services

ENERGY TECH
Supply of key minerals for clean energy crucial: IEA

Fortnite maker girds for epic court clash with Apple

China's Long March-5B rocket booster set for uncontrolled reentry

VR ER: tech helps UK medical students learn safely

ENERGY TECH
Astronomers detect first ever hydroxyl molecule signature in an exoplanet atmosphere

NASA's Webb to study young exoplanets on the edge

When the atmosphere isn't enough

As different as day and night

ENERGY TECH
New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.