. 24/7 Space News .
STELLAR CHEMISTRY
Dark matter: should we be so sure it exists? Here's how philosophy can help
by Antonis Antoniou | PhD candidate - University of Bristol
Bristol UK (SPX) Jun 10, 2022

The graph shows the rotation velocity of stars and gas (vertical axis) as a function of their distance from the centre (horizontal axis). Theory suggests we should get the graph marked 'expected by the visible disk', but reality is different. wikipedia, CC BY-SA

It has been more than 50 years since astronomers first proposed "dark matter", which is thought to be the most common form of matter in the universe. Despite this, we have no idea what it is - nobody has directly seen it or produced it in the lab.

So how can scientists be so sure it exists? Should they be? It turns out philosophy can help us answer these questions.

Back in the 1970s, a seminal study by astronomers Vera Rubin and Kent Ford of how our neighbour galaxy Andromeda rotates revealed a surprising inconsistency between theory and observation. According to our best gravitational theory for these scales - Newton's laws - stars and gas in a galaxy should rotate slower and slower the further away they are from the galaxy's centre. That's because most of the stars will be near the centre, creating a strong gravitational force there.

Rubin and Ford's result showed that this wasn't the case. Stars on the outer edge of the galaxy moved about as fast as the stars around its centre. The idea that the galaxy must be embedded in a large halo of dark matter was basically proposed to explain this anomaly (though others had suggested it previously). This invisible mass interacts with the outer stars through gravity to boost their velocities.

This is only one example of several anomalies in cosmological observations. However, most of these can be equally explained by tweaking the current gravitational laws of Newtonian dynamics and Einstein's theory of general relativity. Perhaps nature behaves slightly differently on certain scales than these theories predict?

One of the first such theories, developed by Israeli physicist Mordehai Milgrom in 1983, suggested that Newtonian laws may work slightly differently when there's extremely small acceleration involved, such as at the edge of galaxies. This tweak was perfectly compatible with the observed galactic rotation. Nevertheless, physicists today overwhelmingly favour the dark matter hypothesis incorporated in the so-called ?CDM model (Lambda Cold Dark Matter).

This view is so strongly entrenched in physics that is widely referred to as the "standard model of cosmology". However, if the two competing theories of dark matter and modified gravity can equally explain galactic rotation and other anomalies, one might wonder whether we have good reasons to prefer one over another.

Why does the scientific community have a strong preference for the dark mater explanation over modified gravity? And how can we ever decide which of the two explanations is the correct one?

Philosophy to the rescue
This is an example of what philosophers call "underdetermination of scientific theory" by the available evidence. This describes any situation in which the available evidence may be insufficient to determine what beliefs we should hold in response to it. It is a problem that has puzzled philosophers of science for a long time.

In the case of the strange rotation in galaxies, the data alone cannot determine whether the observed velocities are due to the presence of additional unobservable matter or due to the fact that our current gravitational laws are incorrect.

Scientists therefore look for additional data in other contexts that will eventually settle the question. One such example in favour of dark matter comes from the observations of how matter is distributed in the Bullet cluster of galaxies, which is made up of two colliding galaxies about 3.8 billion light years from Earth. Another is based on measurements of how light is deflected by (invisible) matter in the cosmic microwave background, the light left over from the big bang. These are often seen as indisputable evidence in favour of dark matter because due Milgrom's initial theory can't explain them.

However, following the publication of these results, further theories of modified gravity have been developed during the last decades in order to account for all the observational evidence for dark matter, sometimes with great success. Yet, the dark matter hypothesis still remains the favourite explanation of physicists. Why?

One way to understand it is to employ the philosophical tools of Bayesian confirmation theory. This is a probabilistic framework for estimating the degree to which hypotheses are supported by the available evidence in various contexts.

In the case of two competing hypotheses, what determines the final probability of each hypothesis is the product of the ratio between the initial probabilities of the two hypotheses (before evidence) and the ratio of the probabilities that the evidence appears in each case (called the likelihood ratio).

If we accept that the most sophisticated versions of modified gravity and dark matter theory are equally supported by the evidence, then the likelihood ratio is equal to one. That means the final decision depends on the initial probabilities of these two hypotheses.

Determining what exactly counts as the "initial probability" of a hypothesis, and the possible ways in which such probabilities can be determined, remains one of the most difficult challenges in Bayesian confirmation theory. And it is here where philosophical analysis turns out to be useful.

At the heart of the philosophical literature on this topic lies the question of whether the initial probabilities of scientific hypotheses should be objectively determined based solely on probabilistic laws and rational constraints. Alternatively, they could involve a number of additional factors, such as psychological considerations (whether scientists are favouring a particular hypothesis based on interest or for sociological or political reasons), background knowledge, the success of a scientific theory in other domains, and so on.

Identifying these factors will ultimately help us understand the reasons why dark matter theory is overwhelmingly favoured by the physics community.

Philosophy cannot ultimately tell us whether astronomers are right or wrong about the existence of dark matter. But it can tell us whether astronomers do indeed have good reasons to believe in it, what these reasons are, and what it would take for modified gravity to become as popular as dark matter.

We still don't know the exact answers to these questions, but we are working on it. More research in philosophy of science will give us a better verdict.


Related Links
Faculty of Science | University of Bristol
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Revealing the secret language of dark matter
Trieste, Italy (SPX) May 01, 2022
In the Universe, dark matter and standard matter "talk" to each other using a secret language. This "discussion" happens thanks to gravity, scientists say, but not in a way they can fully comprehend. A new SISSA study published in "The Astrophysical Journal" sheds light on this long-standing issue. The authors of the research, Ph.D Student Giovanni Gandolfi and supervisors Andrea Lapi and Stefano Liberati, propose a special property for dark matter called a "non-minimal coupling with gravity". Thi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Left in the dust: The first golden age of citizen travel to outer space

Women in space analogues demonstrate more sustainable leadership

Dragon Mission on Hold as Astronauts Conduct Eye Exams, Spacesuit Work

NASA Moon Mission Set to Break Record in Navigation Signal Test

STELLAR CHEMISTRY
Artemis II engine section moves to final assembly

NASA Supplier Completes Manufacturing Artemis III SLS Booster Motors

NASA Marshall Team Delivers Tiny, Powerful 'Lunar Flashlight' Propulsion System

SpaceX launches Nilesat 301 satellite, recovers Falcon 9 first stage

STELLAR CHEMISTRY
How Perseverance averts collisions and zaps

The Aonia Terra region of Mars in colour

Three years of Marsquake measurements

Mars sleeps with one eye open

STELLAR CHEMISTRY
Shenzhou XIV taikonauts to conduct 24 medical experiments in space

Shenzhou XIV astronauts transporting supplies into space station

Three Chinese astronauts arrive at space station

China sends three astronauts to complete space station

STELLAR CHEMISTRY
Solid rocket boosters will support existing ULA customers and Amazon's Project Kuiper

DXC Boosts Connectivity for Space Exploration

Maine looks to grow space economy, for students, research and business

French astronaut Pesquet calls for European space independence

STELLAR CHEMISTRY
UCLA engineers create single-step, all-in-one 3D printing method to make robotic materials

Time to rebuild construction

Moon sculptures, NFTs at futuristic Art Basel fair

Irvine scientists observe effects of heat in materials with atomic resolution

STELLAR CHEMISTRY
Astronomers discover a multiplanet system nearby

New clues suggest how Hot Jupiters form

Asteroid samples contain 'clues to origin of life': Japan scientists

Colossal collisions linked to solar system science

STELLAR CHEMISTRY
NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.