24/7 Space News
TIME AND SPACE
Dark matter could have helped make supermassive black holes in the early universe
illustration only
Dark matter could have helped make supermassive black holes in the early universe
by Holly Ober for UCLA News
Los Angeles CA (SPX) Sep 01, 2024

It takes a long time for supermassive black holes, like the one at the center of our Milky Way galaxy, to form. Typically, the birth of a black hole requires a giant star with the mass of at least 50 of our suns to burn out - a process that can take a billion years - and its core to collapse in on itself.

Even so, at only about 10 solar masses, the resulting black hole is a far cry from the 4 million-solar-masses black hole, Sagittarius A', found in our Milky Way galaxy, or the billion-solar-mass supermassive black holes found in other galaxies. Such gigantic black holes can form from smaller black holes by accretion of gas and stars, and by mergers with other black holes, which take billions of years.

Why, then, is the James Webb Space Telescope discovering supermassive black holes near the beginning of time itself, eons before they should have been able to form? UCLA astrophysicists have an answer as mysterious as the black holes themselves: Dark matter kept hydrogen from cooling long enough for gravity to condense it into clouds big and dense enough to turn into black holes instead of stars. The finding is published in the journal Physical Review Letters.

"How surprising it has been to find a supermassive black hole with a billion solar mass when the universe itself is only half a billion years old," said senior author Alexander Kusenko, a professor of physics and astronomy at UCLA. "It's like finding a modern car among dinosaur bones and wondering who built that car in the prehistoric times."

Some astrophysicists have posited that a large cloud of gas could collapse to make a supermassive black hole directly, bypassing the long history of stellar burning, accretion and mergers. But there's a catch: Gravity will, indeed, pull a large cloud of gas together, but not into one large cloud. Instead, it gathers sections of the gas into little halos that float near each other but don't form a black hole.

The reason is because the gas cloud cools too quickly. As long as the gas is hot, its pressure can counter gravity. However, if the gas cools, pressure decreases, and gravity can prevail in many small regions, which collapse into dense objects before gravity has a chance to pull the entire cloud into a single black hole.

"How quickly the gas cools has a lot to do with the amount of molecular hydrogen," said first author and doctoral student Yifan Lu. "Hydrogen atoms bonded together in a molecule dissipate energy when they encounter a loose hydrogen atom. The hydrogen molecules become cooling agents as they absorb thermal energy and radiate it away. Hydrogen clouds in the early universe had too much molecular hydrogen, and the gas cooled quickly and formed small halos instead of large clouds."

Lu and postdoctoral researcher Zachary Picker wrote code to calculate all possible processes of this scenario and discovered that additional radiation can heat the gas and dissociate the hydrogen molecules, altering how the gas cools.

"If you add radiation in a certain energy range, it destroys molecular hydrogen and creates conditions that prevent fragmentation of large clouds," Lu said.

But where does the radiation come from?

Only a very tiny portion of matter in the universe is the kind that makes up our bodies, our planet, the stars and everything else we can observe. The vast majority of matter, detected by its gravitational effects on stellar objects and by the bending of light rays from distant sources, is made of some new particles, which scientists have not yet identified.

The forms and properties of dark matter are therefore a mystery that remains to be solved. While we don't know what dark matter is, particle theorists have long speculated that it could contain unstable particles which can decay into photons, the particles of light. Including such dark matter in the simulations provided the radiation needed for the gas to remain in a large cloud while it is collapsing into a black hole.

Dark matter could be made of particles that slowly decay, or it could be made of more than one particle species: some stable and some that decay at early times. In either case, the product of decay could be radiation in the form of photons, which break up molecular hydrogen and prevent hydrogen clouds from cooling too quickly. Even very mild decay of dark matter yielded enough radiation to prevent cooling, forming large clouds and, eventually, supermassive black holes.

"This could be the solution to why supermassive black holes are found very early on," Picker said. "If you're optimistic, you could also read this as positive evidence for one kind of dark matter. If these supermassive black holes formed by the collapse of a gas cloud, maybe the additional radiation required would have to come from the unknown physics of the dark sector."

Research Report:Direct Collapse Supermassive Black Holes from Relic Particle Decay

Related Links
University of California - Los Angeles
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
New Horizons Offers Precise Measurements of Cosmic Light in the Universe
Los Angeles CA (SPX) Aug 30, 2024
Astronomers have achieved a significant milestone in understanding the darkness of deep space, thanks to NASA's New Horizons spacecraft. This mission has enabled the most accurate and direct measurements to date of the total amount of light generated by the universe. After more than 18 years in space and nine years following its historic encounter with Pluto, New Horizons is now over 5.4 billion miles (7.3 billion kilometers) away from Earth. In this remote region of the solar system, the spacecra ... read more

TIME AND SPACE
NASA reviews progress of ACS3 solar sail system in orbit

NASA shares reduced Crew-9 team that will return stranded astronauts from ISS

Blue Origin completes latest space tourism flight

NASA says Boeing's Starliner will return to Earth uncrewed on Sept. 6

TIME AND SPACE
Benchmark awarded Air Force Research Lab contract to scale ascent-fueled thrusters

Rocket Lab confirms launch date for second Kineis IoT constellation mission

S. Korea space transport ambitions hopes to challenge SpaceX

Sierra Space completes acoustic testing for Shooting Star cargo module at KSC

TIME AND SPACE
Martian Ice Caps Reveal Insights into Ancient Climate Shifts

Why the Martian polar caps show significant differences

Scientists demonstrate producing fiber materials from simulated Martian soil

China targets Mars sample-return mission by 2028

TIME AND SPACE
China launches Yaogan 43B remote-sensing satellites from Xichang

Shenzhou-18 Crew Tests Fire Alarms and Conducts Medical Procedures in Space

Astronauts on Tiangong Space Station Complete Fire Safety Drill

Shenzhou XVIII Crew Conducts Emergency Drill on Tiangong Space Station

TIME AND SPACE
ATLAS Space Operations secures $15M in investment round led by NewSpace Capital

Iridium introduces advanced Iridium Certus GMDSS for enhanced maritime safety

Global space industry to exceed $6.1 trillion by 2064

T2S Solutions expands spaceflight capabilities with Flexitech Aerospace acquisition

TIME AND SPACE
NASA collaborates with DARPA on robotic satellite servicing

Bright Ascension and ERETS Forge Partnership to Boost Global Space Debris Solutions

AiRANACULUS Expands NASA Contract for Innovative Space Communications Technology

10 Modern Landscaping Ideas to Transform Your Outdoor Space

TIME AND SPACE
Iron winds detected on ultra-hot exoplanet WASP-76 b

ALMA observations reveal gravitational instability in planet-forming disk

3 Questions: Evidence for planetary formation through gravitational instability

NASA's carbon nanotube technology aids search for life on exoplanets

TIME AND SPACE
Outer Solar System may hold far more objects than previously thought

Juice trajectory reset with historic Lunar-Earth flyby

NASA's Juno Mission Maps Jupiter's Radiation Using Danish Technology

Juice captures striking image of Moon during flyby

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.