. 24/7 Space News .
STELLAR CHEMISTRY
Dalian coherent light source reveals the origin of interstellar medium S2 fragments
by Staff Writers
Dalian, China (SPX) Jan 29, 2021

Researchers Directly Observed the C + S2 Channel in CS2 Photodissociation

Studying the creation and evolution of sulfur-containing compounds in outer space is essential for understanding interstellar chemistry. CS2 is believed to be the most important molecule in comet nuclei, interstellar dust, or ice cores. CS and S2 are the photodissociation fragments of CS2.

Forty years ago, the emission spectra of only CS and S2 species, and not those of CS2 species, were observed from several comets by the International Ultraviolet Explorer satellite. The photodissociation mechanism of CS2 molecules remains unclear, and S2 fragments have not been experimentally observed before.

Recently, a team led by Prof. YUAN Kaijun from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in cooperation with Prof. WANG Xing'an's group from the University of Science and Technology of China, observed the C+S2 product channel from CS2 photodissociation for the first time using a home-made Time-Sliced Velocity Map Ion Imaging (TS-VMI) experimental setup, based on the Dalian Coherent Light Source (DCLS).

This study, published in The Journal of Physical Chemistry Letters on January 11 2021, provided direct experimental evidence for the origin of the interstellar medium S2 fragments observed previously.

The researchers investigated the two-photon ultraviolet (UV) and one-photon vacuum ultraviolet (VUV) photodissociation dynamics of CS2 molecules via the VUV free-electron laser (FEL) at DCLS. They directly observed the C+S2 product channel from CS2 photodissociation and obtained images of the electronically ground/excited states of S2 products with vibrational excitation.

Moreover, the researchers analyzed the product scattering anisotropy parameter ss value. The electronically-excited states of the central atom of the CS2 molecule played an important role in the isomerization and photodissociation processes.

This research demonstrated that interstellar medium S2 fragments could be directly generated from CS2 photodissociation.

"Given the similarity of OCS studied in our previous works and CS2 in this work, we believe that the central-atom elimination channel is more general than expected in the photodissociation of triatomic molecules," stated Prof YUAN.

Research paper


Related Links
Dalian Institute Of Chemical Physics, Chinese Academy Sciences
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
New galaxy sheds light on how stars form
Bath UK (SPX) Jan 26, 2021
A lot is known about galaxies. We know, for instance, that the stars within them are shaped from a blend of old star dust and molecules suspended in gas. What remains a mystery, however, is the process that leads to these simple elements being pulled together to form a new star. But now an international team of scientists, including astrophysicists from the University of Bath in the UK and the National Astronomical Observatory (OAN) in Madrid, Spain have taken a significant step towards understand ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA and Boeing target new launch date for next Starliner flight test

NASA spacewalk partially hooks up new science platform

Showtime for ColKa

Axiom Space reveals historic first private crew to visit ISS

STELLAR CHEMISTRY
Virgin Orbit to launch first satellite for Dutch Ministry Of Defense

NASA Marshall, SpaceX team celebrates engines of success

Framework agreement facilitates future slot bookings by ESA

Hot Fire met many objectives, test assessment underway

STELLAR CHEMISTRY
Purdue scientist ready for Mars rover touchdown

NASA's Perseverance Rover 22 days from Mars landing

New Mars rover may collect first sounds recorded on another planet

Six things to know about NASA's Mars helicopter on its way to Mars

STELLAR CHEMISTRY
China's space station core module, cargo craft pass factory review

China's space tracking ship completes satellite launch monitoring

Key modules for China's next space station ready for launch

Major space station components cleared for operations

STELLAR CHEMISTRY
Barbs fly over satellite projects from Musk, Bezos

Sirius XM says its newest satellite has malfunctioned

UN and UK sign agreement to promote space sustainability

MDA appoints new VP of Satellite Systems

STELLAR CHEMISTRY
3D printing to pave the way for Moon colonization

NASA's Deep Space Network welcomes a new dish to the family

D-Orbit's ION satellite carrier rides SpaceX's Falcon 9 to orbit

European team to collaborate in optical communication

STELLAR CHEMISTRY
CHEOPS finds unique planetary system

The 7 rocky TRAPPIST-1 planets may be made of similar stuff

First six-star system where all six stars undergo eclipses

Puzzling six-exoplanet system with rhythmic movement challenges theories of how planets form

STELLAR CHEMISTRY
A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth

Juno mission expands into the future

Dark Storm on Neptune reverses direction, possibly shedding a fragment









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.