. 24/7 Space News .
TIME AND SPACE
DESI maps more galaxies than all previous surveys combined
by Staff Writers
Berkeley CA (SPX) Jan 14, 2022

A slice through the 3D map of galaxies from the completed Sloan Digital Sky Survey (right) and from the first few months of the Dark Energy Spectroscopic Instrument (DESI; left). Earth is at the center, with the furthest galaxies plotted at distances of 10 billion light-years. Each point represents one galaxy. This version of the DESI map shows a subset of 400,000 of the 35 million galaxies that will be in the final map.

The Dark Energy Spectroscopic Instrument (DESI) has cataloged more galaxies than all other previous three-dimensional redshift surveys combined, measuring 7.5 million galaxies in only seven months since beginning science operations. The US Department of Energy's Lawrence Berkeley National Laboratory leads DESI, which is installed at Kitt Peak National Observatory, a program of NSF's NOIRLab, on the Nicholas U. Mayall 4-meter Telescope.

The Dark Energy Spectroscopic Instrument (DESI), has capped off the first seven months of its survey by smashing through all previous records for three-dimensional galaxy surveys, creating the largest and most detailed map of the Universe ever. The DESI survey has already cataloged over 7.5 million galaxies and is adding more at a rate of over a million a month.

In November 2021 alone, DESI cataloged redshifts from 2.5 million galaxies. By the end of its run in 2026, DESI is expected to have over 35 million galaxies in its catalog, enabling an enormous, and so far unsurpassed, variety of cosmology and astrophysics research.

The primary task of the survey is to collect spectra of millions of galaxies across more than a third of the entire sky. By breaking down the light from each galaxy into its spectrum of colors, DESI can determine how much the light has been redshifted - stretched out toward the red end of the spectrum by the expansion of the Universe during the billions of years it traveled before reaching Earth.

It is those redshifts that let DESI see the depth of the sky. The more redshifted a galaxy's spectrum is, in general, the farther away it is. With a 3D map of the cosmos in hand, physicists can chart clusters and superclusters of galaxies.

Those structures carry echoes of their initial formation, when they were just ripples in the infant cosmos. By teasing out those echoes, physicists can use DESI's data to determine the expansion history of the Universe.

DESI is an international science collaboration managed by the US Department of Energy's (DOE) Lawrence Berkeley National Laboratory with primary funding for construction and operations from DOE's Office of Science. DESI is installed at the Nicholas U. Mayall 4-meter Telescope at Kitt Peak National Observatory (KPNO) near Tucson, Arizona. KPNO is a program of NSF's NOIRLab, and DOE contracts with NOIRLab to operate the Mayall Telescope for the DESI survey.

DESI is only about 10% of the way through its five-year mission. Once completed, the final 3D map will yield a better understanding of dark energy, and thereby give physicists and astronomers a better understanding of the past - and future - of the Universe.

"There is a lot of beauty to it," says Berkeley Lab scientist Julien Guy of the map. "In the distribution of the galaxies in the 3D map, there are huge clusters, filaments, and voids. They're the biggest structures in the Universe. But within them, you find an imprint of the very early Universe, and the history of its expansion since then."

DESI has come a long way to reach this point. Originally proposed over a decade ago, construction on the instrument started in 2015 and it saw first light in late 2019. Then, during its validation phase, the coronavirus pandemic hit, shutting down the telescope for several months, though some work continued remotely. In December 2020, DESI turned its eyes to the sky again, testing out its hardware and software, and by May 2021 it started its science survey.


Related Links
Dark Energy Spectroscopic Instrument
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
New theory finds upcoming satellite mission will be able to detect more than expected
Tokyo, Japan (SPX) Jan 13, 2022
The upcoming satellite experiment LiteBIRD is expected to probe the physics of the very early Universe if the primordial inflation happened at high energies. But now, a new paper in Physical Review Letters shows it can also test inflationary scenarios operating at lower energies. Cosmologists believe that in its very early stages, the Universe underwent a very rapid expansion called "cosmic inflation". A success story of this hypothesis is that even the simplest inflationary models are able to acc ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Data-relay system connects astronauts direct to Europe

NASA's newest astronaut class begins training in Houston

Japan space tourist eyes Mariana Trench trip after ISS

CES show highlights: Robo-dogs, self-sailing boat, brain tech

TIME AND SPACE
Virgin Orbit mission success brings UK satellite launch one step closer

Gilmour Space fires up for 2022 with Australia's largest rocket engine test

Indian Space Agency tests cryogenic engine for its first-ever manned mission

Iran tests solid-fuel satellite carrier rocket

TIME AND SPACE
Rolling stones on Mars

Curiosity measures intriguing carbon signature on Mars

Pebbles before mountains

Martian Meteorite's organic materials origin not biological

TIME AND SPACE
China conducts its first rocket launch of 2022

Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

CASC plans more than 40 space launches for China in 2022

TIME AND SPACE
Palomar survey instrument analyzes impact of Starlink satellites

Update on Africa's 1st Satellite constellation built by CPUT

Loft Orbital signs with Airbus to procure 15 Arrow satellite platforms

Kleos' Patrol Mission satellites to launch in April

TIME AND SPACE
A second successful launch for SpaceCloud into space

Access to the 'SpaceDataHighway'

OMEGA joins ClearSpace to clean up space

New DAF software factory aims to digitally transform AFRL

TIME AND SPACE
Unusual team finds gigantic planet hidden in plain sight

Evidence for a second supermoon beyond our solar system

Pandora mission to study stars and exoplanets continues toward flight

Plato exoplanet mission gets green light for next phase

TIME AND SPACE
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.