. 24/7 Space News .
EXO WORLDS
Could a refined space weather model help scientists find life elsewhere
by Jim Steele for UAH News
Huntsville AL (SPX) Mar 31, 2022

illustration only

A refinement to a space weather model developed by a center director at The University of Alabama in Huntsville (UAH) could help scientists check out which planets outside our solar system are likely to have someone home.

Exoplanets are what planets are called when they orbit stars outside our own solar system, and the effort to winnow out those that could harbor life has been intensifying.

Now at the Center for Space Plasma and Aeronomic Research (CSPAR) at UAH, a part of the University of Alabama System, research by Dr. Junxiang Hu along with collaborators has developed a model for tracking stellar energetic particles that can influence the creation of life on exoplanets. These stellar energetic particles are too far away to be directly measured, so they need to be modeled from remote sensing inputs.

"The energetic particles associated with superflares from young solar-like stars will impact the atmospheric chemistry of their close-in exoplanets, possibly generating prebiotic chemicals that could trigger life," says Dr. Hu. "The characterization of these impacts may be important in assessing chemical signatures of the habitability of exoplanets."

Prior modeling used empirical approaches, but the new research applies physics to the endeavor. It doesn't directly identify habitable exoplanets, says Dr. Hu, but it can inform that search.

"This work lays the groundwork for a series of future multi-disciplinary research projects dedicated to understanding the origin of life," he says.

Dr. Hu refined the Particle Acceleration and Transport in the Heliosphere (PATH) model originally created in 2001 by Dr. Gary Zank, who since 2008 has been CSPAR director. That earlier model was focused on getting the correct physics mechanisms in place to model particle acceleration and transport, and then Dr. Zank's work was further extended over the years by Dr. Gang Li and other researchers at UAH.

"Large solar flares are usually associated with coronal mass ejections (CMEs)," says Dr. Hu. "PATH is a tested model that works rather well for solar energetic particle events, and in this work, we extend it to stellar events with some extremely fast CMEs."

The new work, called the improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, uses a physics-based approach to assess the energy spectra of energetic particles being emitted in stellar superflares. Dr. Hu began on the model in 2015 as his doctoral dissertation.

Dr. Zank says the research is well-timed.

"This work is all about space weather in the vicinity of exoplanets, a very hot topic, and we have the most important models in the world for this, all developed in the context of studying so-called gradual solar energetic particle events in the context of space weather," Dr. Zank says. "So, it's an interesting migration of space physics and space weather work to understanding habitability in the context of exoplanets and their space weather."

While developing the new model, Dr. Hu teamed with Dr. Li and Dr. Zank. He collaborated with Dr. Vladimir Airapetian from the NASA Goddard Space Flight Center's Sellers Exoplanet Environments Collaboration (SEEC) and Dr. Meng Jin from the SETI Institute.

The iPATH modeling shows that earlier empirical results could be severely underestimating particle flows impacting exoplanets at very high energies, Dr. Hu says, so extreme superflares from other stars may have a much stronger influence on exoplanets than previously thought.

"Our model's output energetic particle fluence and flux can provide valuable input for the subsequent atmospheric modeling of exoplanets in future work," Dr. Hu says.

The new research serves as proof of concept that the model can work in other star-planet systems beyond the solar system, so the scientists didn't choose specific exoplanets to model for this endeavor.

"In future work, we will choose close-in rocky exoplanets around magnetically active G, K and M dwarfs. In other words, we will select exoplanets that resemble early Earth for case studies," Dr. Hu says.

"We are now working closely with NASA to bring the operational model into public use, under the support of NASA's Community Coordinated Modeling Center and NASA's Space Radiation Analysis Group."

Research Report: "Extreme energetic particle events by superflare-associated CMEs from solar-like stars"


Related Links
University of Alabama in Huntsville (
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Methane could be the first detectable indication of life beyond Earth
Santa Cruz CA (SPX) Mar 29, 2022
If life is abundant in the universe, atmospheric methane may be the first sign of life beyond Earth detectable by astronomers. Although nonbiological processes can generate methane, a new study by scientists at UC Santa Cruz establishes a set of circumstances in which a persuasive case could be made for biological activity as the source of methane in a rocky planet's atmosphere. This is especially noteworthy because methane is one of the few potential signs of life, or "biosignatures," that could ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Roscosmos to Brief Russian Government on Options for Ending ISS Cooperation Soon, Rogozin Says

Russian space agency suspends ISS cooperation over sanctions

Winning technologies benefit NASA and Industry

Blue Origin launches 4th crew to space

EXO WORLDS
Rocket Lab launches 112th satellite to orbit

Successful launch shows new rocket factory's solid steps

South Korea tests first solid-fuel rocket in wake of North Korea ICBM launch

NASA's next moon rocket set for wet dress rehearsal ahead of launch

EXO WORLDS
Making Tracks to the Delta

NASA's Perseverance rover listens in the thin Martian atmosphere

Magma makes marsquakes rock Red Planet

First audio recorded on Mars reveals two speeds of sound

EXO WORLDS
Tianzhou 2 re-enters Earth's atmosphere, mostly burns up

Shenzhou XIII astronauts prep for return

China's Tianzhou-2 cargo craft leaves space station core module

China's space station to support large-scale scientific research

EXO WORLDS
HawkEye 360 launches next-generation Cluster 4 satellites

Blue Canyon Technologies to supply spacecraft buses for HelioSwarm Mission

Terran Orbital begins trading on the New York Stock Exchange

Viasat, Inmarsat to boost UK space industry investments

EXO WORLDS
D-Orbit Launches its Fifth ION Satellite Carrier Mission

ATLANT 3D Nanosystems developing a space-certified Nanofabricator 0G

SCOUT, USSPACECOM sign agreement to share space situational awareness services

SES partners with NorthStar to tackle space sustainability challenges

EXO WORLDS
Kepler telescope delivers new planetary discovery from the grave

Miniaturized laser systems to seek out traces of life in space

NASA simulator helps to shed light on mysteries of Solar System

Could a refined space weather model help scientists find life elsewhere

EXO WORLDS
Juice's journey and Jupiter system tour

Pluto's giant ice volcanos may have formed from multiple eruption events

Chaos terrains on Europa could be shuttling oxygen to ocean

Searching for Planet Nine









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.