. 24/7 Space News .
SOLAR SCIENCE
Cosmic ray counts hidden in spacecraft data highlight influence of solar cycle at Mars and Venus
by Staff Writers
Paris, France (SPX) Dec 06, 2022

File image showing the forecast for Solar Cycle 25.

Measurements by ESA's long-serving twin missions, Mars Express and Venus Express, have captured the dance between the intensity of high-energy cosmic rays and the influence of the Sun's activity across our inner Solar System.

A comparison of data from the ASPERA plasma sensor, an instrument carried by both spacecraft, with the number of sunspots visible on the surface of the Sun shows how cosmic ray counts are suppressed during peaks of activity in the 11-year solar cycle. The international study, led by Dr Yoshifumi Futaana of the Swedish Institute of Space Physics, has been published in the Astrophysical Journal.

Cosmic rays are particles travelling at almost the speed of light that originate outside our Solar System. They are a dangerous form of high energy radiation that can cause electronic failures in spacecraft and damage the DNA of humans in space.

As well as the decadal-long relationship with the solar cycle, the researchers also looked at how cosmic ray detections varied over the short timescales of an orbit. Surprisingly, they found that the area protected from cosmic rays behind Mars is more than 100 kilometres wider than the planet's actual radius. The cause of why this blocked area should be so large is not yet clear.

"The study shows the range of valuable insights that can be derived from what is actually background count information collected by the ASPERA instruments. Understanding the various relationships between cosmic rays and the solar cycle, the atmospheres of planets and the performance of spacecraft instrumentation is very important for future robotic missions and human exploration," said Dr Futaana.

Launched in 2003, Mars Express remains in service around the Red Planet, while Venus Express operated from 2006 until 2014. The researchers compared the 17-year dataset from Mars and eight-year dataset from Venus with Earth-based cosmic ray measurements from the Thule neutron monitor in Greenland. Scientists took median value of cosmic ray counts over three-month periods to minimise the influence of sporadic solar activity, such as flares or coronal mass ejections. The databases of background radiation counts extracted for the study have been published and can be accessed through the Europlanet SPIDER planetary space weather service.

All the datasets showed a decrease in the number of cosmic ray detections as the peak in activity for Solar Cycle 24 was reached. In particular, the Mars Express data and the observations from Earth showed very similar features. However, there was an apparent lag of around nine months between the maximum number of sunspots and the minimum in cosmic ray detections at Mars.

"Previous studies have suggested that there is a delay of several months between solar activity and the behaviour of cosmic rays at the Earth and at Mars. Our results appear to confirm this and also provide further evidence that Solar Cycle 24 was a bit unusual, perhaps due to the long solar minimum between Cycle 23 and 24, or the relatively low activity during Cycle 24," said Dr Futaana.

The analysis of the Venus Express data has been complicated by changes in the way onboard processing was carried out from 2010 onwards. In addition, while the ASPERA instruments carried by Mars Express and Venus Express were based on a common design, they were each tailored to the very different planetary environments in which they operated. This means that a direct comparison of cosmic ray fluxes at Mars and Venus is not possible using the available datasets.

"The use of background counts to study the interaction of cosmic rays and high energy particles with planetary missions is relatively new. However, obtaining this information shows potential as a powerful tool, for example, in protecting the upcoming JUpiter Icy moon Explorer (JUICE) mission of the European Space Agency, which will explore the harsh environment around Jupiter's icy moons," said Nicolas Andre of the Institut de Recherche en Astrophysique et Planetologie (IRAP) in Toulouse, France, coordinator of the Europlanet SPIDER service and co-author of this study.

Research Report:Galactic Cosmic Rays at Mars and Venus: Temporal Variations from Hours to Decades Measured as the Background Signal of Onboard Micro-Channel Plates


Related Links
Europlanet
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
Researchers observe directly turbulent magnetic reconnection in solar wind
Hefei, China (SPX) Dec 05, 2022
Researchers from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences, under the direction of Prof. WANG Rongsheng and Prof. LU Quanming, used data from the Magnetospheric Multiscale (MMS) mission to directly observe bursty and turbulent magnetic reconnection in the solar wind. Their findings were published in Nature Astronomy. Magnetic reconnection is an energy-releasing process that causes explosive phenomena in interplanetary space. During the process, the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
NSF-funded solicitation seeks physical science proposals to utilize ISS National Lab

Plant on China's Shenzhou-15 spaceship begins growing

At NASA, France's Macron and US vow strong space cooperation

SpaceX resupply cargo capsule docks with International Space Station

SOLAR SCIENCE
Pulsar Fusion funded by the UK Govt to construct a nuclear based space engine

Launches secured for five Sentinel satellites

Can plasma instability in fact be the savior for magnetic nozzle plasma thrusters

Southern Launch and ATSpace return to launch up to two Kestrel I rockets before the end of the year

SOLAR SCIENCE
NASA May Have Landed on a Martian Megatsunami Deposit Nearly 50 Years Ago

Analyzing the rhythmically layered bedrock above the marker band: Sols 3669-3670

Martian dust devil analogues in the Mojave Desert #ASA183

Back to the Marker Band - Sols 3667-3668

SOLAR SCIENCE
China's six astronauts in two missions make historic gathering in space

China astronauts return from Tiangong space station

Tiangong space station open to world

China ready to implement moon landing project

SOLAR SCIENCE
SpaceX gets federal approval to launch 7,500 communication satellites

Calling all space detectives to hack an exoplanet

Spirent brings realistic testing to emerging LEO satellite applications

Slingshot Aerospace raises $40M in oversubscribed Series A2 funding round

SOLAR SCIENCE
AFRL teams with industry to expand alternative natural rubber supply

NOAA approves Maxar to provide non-earth imaging services to government and commercial customers

Milestone for laser technology

Terran Orbital assists demonstration of 1.4 Terabyte Single-Pass Optical Downlink for Pathfinder TD3 Satellite

SOLAR SCIENCE
Southern hemisphere's biggest radio telescope begins search for ET signatures

An exoplanet atmosphere as never seen before

Many planets could have atmospheres rich in helium, study finds

NASA's Webb reveals an exoplanet atmosphere as never seen before

SOLAR SCIENCE
The PI's Perspective: Extended Mission 2 Begins!

NASA's Europa Clipper gets its wheels for traveling in deep space

Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.