. 24/7 Space News .
ENERGY TECH
Cooling 100 million degree plasma with a hydrogen-neon mixture ice pellet
by Staff Writers
Tokyo, Japan (SPX) Jan 09, 2023

Plasmoid behavior of pure hydrogen and hydrogen mixed with 5 % neon. In this experiment, a new Thomson Scattering (TS) diagnostic system operating at (an unprecedented rate of) 20 kHz was used to (i) measure the density of the plasmoid at the moment it passed through the observation region, and (ii) identify its position, which verified the theoretical predictions.

At ITER - the world's largest experimental fusion reactor, currently under construction in France through international cooperation - the abrupt termination of magnetic confinement of a high temperature plasma through a so-called "disruption" poses a major open issue. As a countermeasure, disruption mitigation techniques, which allow to forcibly cool the plasma when signs of plasma instabilities are detected, are a subject of intensive research worldwide.

Now, a team of Japanese researchers from National Institutes for Quantum Science and Technology (QST) and National Institute for Fusion Science (NIFS) of National Institute of National Sciences (NINS) found that by adding approximately 5% neon to a hydrogen ice pellet, it is possible to cool the plasma more deeply below its surface and hence more effectively than when pure hydrogen ice pellets are injected.

Using theoretical models and experimental measurements with advanced diagnostics at Large Helical Device owned by NIFS, the researchers clarified the dynamics of the dense plasmoid that forms around the ice pellet and identified the physical mechanisms responsible for the successful enhancement of the performance of the forced cooling system, which is indispensable for carrying out the experiments at ITER. These results will contribute to the establishment of plasma control technologies for future fusion reactors. The team's report was made available online in Physical Review Letters.

The construction of the world's largest experimental fusion reactor, ITER, is underway in France through international cooperation. At ITER, experiments will be conducted to generate 500 MW fusion energy by maintaining the 'burning state' of the hydrogen isotope plasma at more than 100 million degrees. One of the major obstacles to the success of those experiments is a phenomenon called "disruption" during which the magnetic field configuration used to confine the plasma collapses due to magnetohydrodynamic instabilities.

Disruption causes the high-temperature plasma to flow into the inner surface of the containing vessel, resulting in structural damage that, in turn, may cause delays in the experimental schedule and higher cost. Although the machine and the operating conditions of ITER have been carefully designed to avoid disruption, uncertainties remain and for a number of experiments so that a dedicated machine protection strategy is required as a safeguard.

A promising solution to this problem is a technique called "disruption mitigation," which forcibly cools the plasma at the stage where first signs of instabilities that may cause a disruption are detected, thereby preventing damage to plasma-facing material components. As a baseline strategy, researchers are developing a method using ice pellets of hydrogen frozen at temperatures below 10 Kelvin and injecting it into a high-temperature plasma.

The injected ice melts from the surface and evaporates and ionizes owing to heating by the ambient high-temperature plasma, forming a layer of low-temperature, high-density plasma (hereafter referred to as a "plasmoid") around the ice.

Such a low-temperature, high-density plasmoid mixes with the main plasma, whose temperature is reduced in the process. However, in recent experiments, it has become clear that when pure hydrogen ice is used, the plasmoid is ejected before it can mix with the target plasma, making it ineffective for cooling the high-temperature plasma deeper below the surface.

This ejection was attributed to the high pressure of the plasmoid. Qualitatively, a plasma confined in a donut-shaped magnetic field tends to expand outward in proportion to the pressure. Plasmoids, which are formed by the melting and the ionization of hydrogen ice, are cold but very dense.

Because temperature equilibration is much faster than density equilibration, the plasmoid pressure rises above that of the hot target plasma. The consequence is that the plasmoid becomes polarized and experiences drift motion across the magnetic field, so that it propagates outward before being able to fully mix with the hot target plasma.

A solution to this problem was proposed from theoretical analysis: model calculations predicted that by mixing a small amount of neon into hydrogen, the pressure of the plasmoid could be reduced. Neon freezes at a temperature of approximately 20 Kelvin and produces strong line radiation in the plasmoid. Therefore, if the neon is mixed with hydrogen ice before injection, part of the heating energy can be emitted as photon energy.

To demonstrate such a beneficial effect of using a hydrogen-neon mixture, a series of experiments was conducted in the Large Helical Device (LHD) located in Toki, Japan. For many years, the LHD has operated a device called the "solid hydrogen pellet injector" with high reliability, which injects ice pellets with a diameter of approximately 3 mm at the speed of 1100 m/s. Owing to the system's high reliability, it is possible to inject hydrogen ice into the plasma with a temporal precision of 1 ms, which allows measurement of the plasma temperature and density just after the injected ice melts.

Recently, the world's highest time resolution for Thomson Scattering (TS) of 20 kHz was achieved in the LHD system using new laser technology. Using this system, the research team has captured the evolution of plasmoids.

They found that, as predicted by theoretical calculations, plasmoid ejection was suppressed when hydrogen ice was doped with approximately 5 % neon, in stark contrast to the case where pure hydrogen ice was injected. In addition, the experiments confirmed that the neon plays a useful role in the effective cooling of the plasma.

The results of this study show for the first time that the injection of hydrogen ice pellets doped with a small amount of neon into a high-temperature plasma is useful to effectively cool the deep core region of the plasma by suppressing plasmoid ejection.

This effect of neon doping is not only interesting as a new experimental phenomenon, but also supports the development of the baseline strategy of disruption mitigation in ITER. The design review of the ITER disruption mitigation system is scheduled for 2023, and the present results will help improve the performance of the system.

Research Report:Enhanced Material Assimilation in a Toroidal Plasma Using Mixed H2 + Ne Pellet Injection and Implications to ITER


Related Links
National Institute for Fusion Science
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
International fusion energy project faces delays, says chief
Saint-Paul-Les-Durance, France (AFP) Jan 6, 2023
An international project in nuclear fusion may face "years" of delays, its boss has told AFP, weeks after scientists in the United States announced a breakthrough in their own quest for the coveted goal. The International Thermonuclear Experimental Reactor (ITER) project seeks to prove the feasibility of fusion as a large-scale and carbon-free source of energy. Installed at a site in southern France, the decades-old initiative has a long history of technical challenges and cost overruns. Fus ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
SpaceX Transporter-6 successfully launched Europe's first solar sail mission

Ukraine startups at CES strive to help the nation triumph

Green tech fights for limelight at CES gadget fest

Station crew wraps up a busy year as Soyuz review continues

ENERGY TECH
Virgin Orbit completes final End-to-end Rehearsal for first UK launch

Sidus Space awarded Bechtel Cable Assembly contract for Mobile Launcher 2

Artemis I Orion spacecraft returns to Kennedy Space Center

Latest launch marks 64th mission for China in 2022

ENERGY TECH
A Scuff for the New Year: Sols 3699-3702

MOXIE sets consecutive personal bests and Mars records for oxygen production

NASA explores a winter wonderland on Mars

The 10 Days of Christmas: Sols 3689-3698

ENERGY TECH
China sets multiple records in space during

Chinese space-tracking ship sets sail for new missions

China's space sector set to rocket into future

China's space station Tiangong enters new phase of application, development

ENERGY TECH
Spire Global launched 6 satellites on SpaceX Transporter-6 Mission

Chinese commercial space company to launch stackable satellites

Iridium introduces its latest IoT data service

US space entities examine future space technology

ENERGY TECH
Riddle solved: Why was Roman concrete so durable?

Stop and smell the metaverse roses: Virtual world on display at CES

From bees to bullets, CES tech show gives gamers the feels

High-performance visible-light lasers that fit on a fingertip

ENERGY TECH
Assembly begins on NASA's next tool to study exoplanets

What it would take to discover life on Saturn's icy moon Enceladus

Kepler's first exoplanet is spiraling toward its doom

Two exoplanets may be mostly water, Hubble and Spitzer find

ENERGY TECH
PSI Io Input/Output observatory discovers large volcanic outburst on Jupiter's moon Io

Mix a space juice to celebrate ESA's Juice mission

Juno spacecraft recovering memory after 47th Flyby of Jupiter

Four decade study finds mysterious patterns in temperatures at Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.