Subscribe free to our newsletters via your
. 24/7 Space News .




MILITARY COMMUNICATIONS
Chip-Sized Digital Optical Synthesizer to Aim for Routine Terabit-per-second Communications
by Staff Writers
Washington DC (SPX) Apr 30, 2014


File image.

In the 1940s, researchers learned how to precisely control the frequency of microwaves, which enabled radio transmission to transition from relatively low-fidelity amplitude modulation (AM) to high-fidelity frequency modulation (FM). This accomplishment, called microwave frequency synthesis, brought about many advanced technologies now critical to the military, such as wireless communications, radar, electronic warfare, atomic sensors and precise timing.

Today, optical communications employ techniques analogous to those of pre-1940 AM radio, due to the inability to control frequency precisely at optical frequencies, which are typically 1,000 times higher than microwaves. The higher frequency of light, however, offers potential for 1,000-fold increase in available bandwidth for communications and other applications.

As both government and commercial need for bandwidth continues to grow, DARPA's new Direct On-chip Digital Optical Synthesizer program seeks to do with light waves what researchers in the 1940s achieved with radio microwaves. Currently, optical frequency synthesis is only possible in laboratories with expensive racks of equipment. If successful, the program would miniaturize optical synthesizers to fit onto microchips, opening up terahertz frequencies for wide application across military electronics systems and beyond.

"The goal of this program is to make optical frequency synthesis as ubiquitous as microwave synthesis is today," said Robert Lutwak, DARPA program manager. "There are significant challenges, but thanks to related DARPA programs POEM, Quasar, ORCHID, PULSE and E-PHI and other advanced laboratory research, technology is at the tipping point where we're ready to attempt miniaturization of optical frequency synthesis on an inexpensive, small, low-power chip."

The basic concept is to create a "gearbox" on a chip that produces laser light with a frequency that is a precise multiple of a referenced radio frequency, such as is readily available within most existing DoD and consumer electronic systems. The ability to control optical frequency in a widely available microchip could enable a host of advanced applications at much lower cost, including:

+ High-bandwidth (terabit per second) optical communications

+ Enhanced chemical spectroscopy, toxin detection and facility identification

+ Improved light detection and ranging (LiDAR)

+ High-performance atomic clocks and inertial sensors for position, navigation and timing (PNT) applications

+ High-performance optical spectrum analysis (OSA)

For example, digital optical synthesizers on a chip could increase accuracy for optical chemical sensing by six orders of magnitude while reducing cost, size and power requirements by many orders of magnitude over current capabilities. These improvements would make it possible to detect adversary chemical production facilities with high sensitivity from much farther away than is possible today.

The program envisions three phases, lasting a total of 42 months. Phase 1 would involve a demonstration of optical frequency synthesis in a laboratory, using low size, weight and power (SWaP) optical components. Phase 2 calls for a demonstration of an integrated electro-optical component. Phase 3 calls for successful demonstration of integrated optical frequency synthesizer and control electronics meeting all program performance and SWaP metrics.

"We're looking for multidisciplinary teams made up of experts in micro- and nano-fabrication, optics and photonics, and heterogeneous integration to bring the component technologies together," Lutwak said.

To familiarize potential participants with the program's technical objectives, DARPA has scheduled a Proposers' Day for Monday, April 28, 2014, in Arlington, Va. For details, visit here. The Broad Agency Announcement (BAA) for the program is available here.

.


Related Links
DARPA
Read the latest in Military Space Communications Technology at SpaceWar.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MILITARY COMMUNICATIONS
Boeing Receives First Multi-year Contract for Rescue Radio Logistics Support
Huntington Beach CA (SPX) Apr 30, 2014
Under a new four-year contract from the U.S. Air Force, Boeing will provide maintenance, engineering, training and support for the system that enables the rescue of downed pilots and other warfighters in danger. The Combat Survivor Evader Locator (CSEL) program's first multi-year logistics contract is valued at $32.5 million in total. A global emergency call system used by the Air Force, A ... read more


MILITARY COMMUNICATIONS
John C. Houbolt, Unsung Hero of the Apollo Program, Dies at Age 95

NASA Completes LADEE Mission with Planned Impact on Moon's Surface

Russia plans to get a foothold in the Moon

Russian Federal Space Agency is elaborating Moon exploration program

MILITARY COMMUNICATIONS
Target on Mars Looks Good for NASA Rover Drilling

Mars Rover Switches to Driving Backwards Due to Elevated Wheel Currents

Traces of recent water on Mars

Drill Here? NASA's Curiosity Mars Rover Inspects Site

MILITARY COMMUNICATIONS
Orion Undergoes Simulation Of Intense Launch Vibrations

NASA Partners with LittleBits Electronics on STEM Activitie

China village gunning for tourists

NASA Selects Commercial Crew Program Manager

MILITARY COMMUNICATIONS
China issues first assessment on space activities

China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

MILITARY COMMUNICATIONS
NASA Seeks to Evolve ISS for New Commercial Opportunities

Astronauts Complete Short Spacewalk to Replace Backup Computer

No Official Confirmation of NASA Severing Ties with Russian Space Agency

Astronauts Prep for Spacewalk as Mission Managers Evaluate Busy Schedule

MILITARY COMMUNICATIONS
Second O3b satellite cluster delivered for upcoming Arianespace Soyuz launch

Court blocks US plan to buy Russian rocket engines

Commercial liftoff for Europe's smallest launcher

Arianespace to launch Indonesia satellite BRIsat

MILITARY COMMUNICATIONS
Alien planet's rotation speed clocked for first time

Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun

Seven Samples from the Solar System's Birth

Astronomical Forensics Uncover Planetary Disks in NASA's Hubble Archive

MILITARY COMMUNICATIONS
Coming soon: a brain implant to restore memory

Raytheon developing the world's most advanced digital radar

Engineering Breakthrough Will Allow Cancer Researchers to Create Live Tumors With a 3D Printer

Newly Identified 'Universal' Property of Metamagnets May Lead to Everyday Uses




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.