. 24/7 Space News .
IRON AND ICE
Bright hydrothermal deposits on dwarf planet Ceres have a style all their own
by Staff Writers
Columbia, MD (SPX) Aug 14, 2020

Dawn's early orbital mapping revealed these features, but without enough detail to show how they formed. One theory was that the Faculae formed as deposits from hot or warm springs; on Earth, many such springs make extensive deposits of carbonate minerals (for example, in Yellowstone National Park).

Data from NASA's recent Dawn mission show that salty groundwaters in Occator Crater on Ceres were driven to the surface by impact heat and formed low mounds and pits, as well as thin sheets of sodium-carbonate minerals from multitudes of small hot-spring seeps.

Using a combination of stereo images and detailed topographic maps derived from Dawn observations, scientists from the Lunar and Planetary Institute (LPI) and other institutional participants on the Dawn project have mapped the distribution, dimensions, and structures of volatile-related features in Occator, and deduced their origins.

The findings from this study, led by USRA's Dr. Paul Schenk, a participating scientist for the Dawn mission with the LPI (managed by Universities Space Research Association), confirms that hydrothermal-related features are common on the floor of Occator, but are very different from those seen on Mars by other spacecraft.

"We see numerous low mounds and pits with bright deposits on the floor of Occator, but they do not resemble the densely packed, large, deep pits found on Martian craters," reports Dr. Schenk. "This difference in morphology is likely related to the more water-rich composition of Ceres' crust."

The findings appear in a special collection of papers on Dawn's high-resolution observations published by Nature Astronomy, Nature Geoscience, and Nature Communications on August 10.

NASA's Dawn spacecraft gave scientists extraordinarily close-up views of the dwarf planet Ceres, which lies in the main asteroid belt between Mars and Jupiter. By the time the mission ended in October 2018, the orbiter had dipped to less than 22 miles (35 kilometers) above Ceres' surface, revealing crisp details of the bright sodium-carbonate deposits and other well preserved features on the floor of Occator Crater (57-miles across, or 92-kilometers), Ceres' freshest large crater.

Dawn's high-resolution observations of Occator, at pixel scales as good as 3.5 meters, are our first opportunity to examine in detail the formation of features and deposits in an impact driven hydrothermal system beyond Earth or Mars. Such systems, which are strong candidates for habitable environments on early Earth, are thus of astrobiological importance.

Long before Dawn arrived at Ceres in 2015, telescope views had shown that it had diffuse bright regions, but their nature was unknown. From its close orbit, Dawn captured images of two distinct, highly reflective areas within Occator Crater, which were officially named Cerealia Facula and Vinalia Faculae. ("Faculae" means bright areas.) The bright carbonate deposits in Vinalia Faculae (a series of large bright spots 2 to 5 kilometers across on the eastern floor of Occator) also came in for scrutiny.

Dawn's early orbital mapping revealed these features, but without enough detail to show how they formed. One theory was that the Faculae formed as deposits from hot or warm springs; on Earth, many such springs make extensive deposits of carbonate minerals (for example, in Yellowstone National Park).

Analysis of Dawn's extended mission high-resolution data show that the bright spots at Vinalia Faculae formed as thin surface coatings (less than 10 meters thick in most locations).

These deposits were formed by effusion of warm brine solutions at hundreds or even thousands of individual sites, where dissolved carbonates and other minerals rapidly came out of solution and crystallized on the surface as the waters evaporated. Where these brine seeps and deposits were most abundant, the small bright spots of individual seeps coalesced to form the larger bright patches of the Vinalia Faculae complex.

While related features have been spotted on Mars, this is the first time such features driven by groundwater and hydrothermal systems have been observed on a dwarf planet or any other body.

"These observations show that the floor of Ceres' Occator Crater underwent a lot of activity after impact and that the processing of groundwater driven by impact heat continued for some time," says Dr. Schenk. "Our mapping with Dawn's amazing stereo images also shows that hydrothermal activity after large impacts on water-rich bodies each has a distinctive style, directly related to the unique composition of each planet, including the dwarf planet Ceres."


Related Links
Universities Space Research Association
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Dwarf planet Ceres is an ocean world: study
Paris (AFP) Aug 10, 2020
The dwarf planet Ceres - long believed to be a barren space rock - is an ocean world with reservoirs of sea water beneath its surface, the results of a major exploration mission showed Monday. Ceres is the largest object in the asteroid belt between Mars and Jupiter and has its own gravity, enabling the NASA Dawn spacecraft to capture high-resolution images of its surface. Now a team of scientists from the United States and Europe have analysed images relayed from the orbiter, captured around ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Moonstruck 'aroma sculptor' builds scent from space

Take Me to Mars

A QandA on the Demo-2 mission

Power, bones, bubbles and other Weightless action on the Space Station

IRON AND ICE
Aerojet Rocketdyne to provide ULA's Vulcan Centaur Key Propulsion for future Air Force Launch Services

U.S. hypersonic weapon system completes second test on B-52 Stratofortress

BE-4 engine will support US Space Force space launch program

Russia wants to return to Venus, build reusable rocket

IRON AND ICE
NASA scientists leverage carbon-measuring instrument for Mars studies

NASA's MAVEN observes Martian night sky pulsing in ultraviolet light

Lava tubes on Mars and the Moon are so wide they can host planetary bases

Rice researchers use InSight for deep Mars measurements

IRON AND ICE
China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

IRON AND ICE
SIA urges FCC to ensure spectrum continues to provide satellite broadband connectivity

SES selects SpaceX for launch of new C-Band satellites

SES selects ULA to launch two C-Band satellites to accelerate C-Band clearing

Exolaunch awarded contracts to deliver Swarm Satellites into orbit on Falcon 9

IRON AND ICE
First laser detection of space debris in daylight

Laser beams reflected between Earth and Moon boost science

PredaSAR chooses SpaceX to launch its first synthetic aperture radar satellite

Return of the LIDAR

IRON AND ICE
Hubble uses Earth as a Proxy for identifying oxygen on exoplanets

NASA's planet hunter completes its primary mission

VLBA finds planet orbiting small, cool star

Surprisingly dense exoplanet challenges planet formation theories

IRON AND ICE
Huge ring-like structure on Ganymede's surface may have been caused by violent impact

Inside the ice giants of space

Ammonia sparks unexpected, exotic lightning on Jupiter

Shallow Lightning and Mushballs reveal ammonia to Juno scientists









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.