. 24/7 Space News .
ROBO SPACE
Automated technology allows unparalleled space exploration from Moon, to asteroids, and beyond
by Emily Fischer for GSFC News
Greenbelt MD (SPX) Oct 20, 2020

File illustration of OSIRIS-REx at Bennu asteroid.

When landing Apollo 11 in 1969, astronauts looked out the window for distinguishing features that they recognized from maps of the Moon and were able to steer the lander to avoid a disastrous touchdown on top of a rocky area. Now, 50 years later, the process can be automated. Distinguishing features, like known craters, boulders, or other unique surface characteristics, provide insight into surface hazards to help avoid them while landing.

NASA scientists and engineers are maturing technology for navigating and landing on planetary bodies by analyzing images during descent - a process called terrain relative navigation (TRN). This optical navigation technology is included on NASA's newest Mars rover, Perseverance, which will test TRN when it lands on the Red Planet in 2021, paving the way for future crewed missions to the Moon and beyond. TRN is also being used during NASA's upcoming Origins, Spectral Interpretation, Resources Identification, Security, Regolith Explorer (OSIRIS-REx) mission Touch-and-Go (TAG) event to collect samples of the asteroid Bennu in order to better understand the characteristics and movement of asteroids.

Since reaching Bennu in 2018, the OSIRIS-REx spacecraft has mapped and studied its surface, including its topography and lighting conditions, in preparation for TAG. Nightingale crater was chosen from four candidate sites based on its great amount of sampleable material and accessibility for the spacecraft.

Engineers routinely use ground-based optical navigation methods to navigate the OSIRIS-REx spacecraft close to Bennu, where new images taken by the spacecraft are compared to three-dimensional topographic maps. During TAG, OSIRIS-REx will perform a similar optical navigation process onboard in real-time, using a TRN system called Natural Feature Tracking. Images will be taken of the sample site during TAG descent, compared with onboard topographic maps, and the spacecraft trajectory will be readjusted to target the landing site. Optical navigation could also be used in the future to minimize the risks associated with landing in other unfamiliar environments in our solar system.

NASA's Lunar Reconnaissance Orbiter (LRO) has acquired images from orbit since 2009. LRO Project Scientist Noah Petro said one challenge to preparing for landed missions is the lack of high-resolution, narrow-angle camera images at every lighting condition for any specific landing site. These images would be useful for automated landing systems, which need the illumination data for a specific time of lunar day. However, NASA has been able to collect high-resolution topographic data using LRO's Lunar Orbiter Laser Altimeter (LOLA).

"LOLA data, and other topographic data, let us take the shape of the Moon and shine a light on it for any time in the future or past, and with that we can predict what the surface will look like," Petro said.

Using LOLA data, sun angles are overlaid on a three-dimensional elevation map to model shadows of surface features at specific dates and times. NASA scientists know the position and orientation of the Moon and LRO in space, having taken billions of lunar laser measurements. Over time, these measurements are compiled into a grid-map of the lunar surface. Images taken during landing are compared to this master map so that landers that may be used as part of the Artemis program have another tool to safely navigate the lunar terrain.

The lunar surface is like a fingerprint, Petro said, where no two landscapes are identical. Topography can be used to determine a spacecraft's exact location above the Moon, comparing images like a forensic scientist compares fingerprints from crime scenes to match a known person to an unknown person - or to match a location to where the spacecraft is in its flight.

After landing, TRN can be used on the ground to help astronauts navigate crewed rovers. As part of NASA's lunar surface sustainability concept, the agency is considering using a habitable mobility platform like an RV as well as a lunar terrain vehicle (LTV) to help crew travel on the lunar surface.

Astronauts can typically travel short distances of a few miles in an unpressurized rover like the LTV so long as they have landmarks to guide them. However, traveling greater distances is much more challenging, not to mention the Sun at the lunar South Pole is always low on the horizon, adding to visibility challenges. Driving across the South Pole would be like driving a car straight east first thing in the morning - the light can be blinding, and landmarks can appear distorted. With TRN, astronauts may be better able to navigate the South Pole despite the lighting conditions, as the computer may better detects hazards.

Speed is the key difference between using TRN to land a spacecraft and using it to navigate a crewed rover. Landing requires capturing and processing images faster, with as short as one second intervals between images. To bridge the gap between images, onboard processors keep the spacecraft on track to safely land.

"When you move slower - such as with rovers or OSIRIS-REx orbiting around the asteroid - you have more time to process the images," said Carolina Restrepo, an aerospace engineer at NASA Goddard in Maryland working to improve current data products for the lunar surface. "When you are moving very fast - descent and landing - there is no time for this. You need to be taking images and processing them as fast as possible aboard the spacecraft and it needs to be all autonomous."

Automated TRN solutions can address the needs of human and robotic explorers as they navigate unique locations in our solar system, such as the optical navigation challenges faced by OSIRIS-REx for TAG on Bennu's rocky surface. Because of missions like LRO, Artemis astronauts can use TRN algorithms and lunar topography data to supplement images of the surface in order to land and safely explore the Moon's South Pole.

"What we're trying to do is anticipate the needs of future terrain relative navigation systems by combining existing data types to make sure we can build the highest-resolution maps for key locations along future trajectories and landing sites," Restrepo said. "In other words, we need high-resolution maps both for scientific purposes as well as for navigation."

Video: How OSIRIS-REx will Steer Itself to Sample an Asteroid


Related Links
OSIRIS-REx at NASA
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROBO SPACE
ESA's force-feedback rover controlled from a nation away
Paris (ESA) Oct 13, 2020
A controller in Germany operated ESA's gripper-equipped Interact rover around a simulated moonscape at the Agency's technical heart in the Netherlands, to practice retrieving geological samples. At the same time a smaller Germany-based rover interacted with ESA's rover as if together at the same site - in a dress rehearsal for a robotic test campaign to the Moon-like volcanic slopes of Mount Etna, scheduled for next year. The scenario behind this week's testing is that in the future, astronauts ab ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Air leak rate at Russia's ISS Zvezda module halves after crack sealed with tape

Twenty years of human presence on Space Station

Orion spacecraft ready to return humans to deep space, officials say

China passes export law protecting national security, covering tech

ROBO SPACE
All engines for Ariane 6 complete qualification tests

Draper signs agreement to provide software for Stratolaunch's hypersonic vehicle

DoD establishes hypersonics center at Naval Surface Warfare Center

Lockheed Martin Adds Three Industry Partners To OpFires Team

ROBO SPACE
NASA InSight's 'Mole' is out of sight

This transforming rover can explore the toughest terrain

Airbus to bring first Mars samples to Earth

NASA, JAXA to Send Sampling Technology to Moon and Phobos

ROBO SPACE
China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

ROBO SPACE
SpaceX launches 14th batch of Starlink satellites

Space company takes to the skies alongside the NHS

A new decade of European exploration

Consultation on draft insurance and liabilities requirements to implement the Space Industry Act 2018

ROBO SPACE
Astroscale Brings Total Capital Raised to U.S. $191 Million, Closing Series E Funding Round

Microwave lenses harnessed for multi-beam forming

Western Australia to host space communications station

Zortrax develops 3D printing technology with support of ESA

ROBO SPACE
Two Planets Around a Red Dwarf

Earth-like planets often come with a bodyguard

No social distancing at the beginning of life

Vaporized metal in the air of an exoplanet

ROBO SPACE
The mountains of Pluto are snowcapped, but not for the same reasons as on Earth

Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.