. 24/7 Space News .
STELLAR CHEMISTRY
Astronomers discover a rare "black widow" binary, with the shortest orbit yet
by Jennifer Chu for MIT News
Boston MA (SPX) May 05, 2022

An illustrated view of a black widow pulsar and its stellar companion. The pulsar's gamma-ray emissions (magenta) strongly heat the facing side of the star (orange). The pulsar is gradually evaporating its partner.

The flashing of a nearby star has drawn MIT astronomers to a new and mysterious system 3,000 light years from Earth. The stellar oddity appears to be a new "black widow binary" - a rapidly spinning neutron star, or pulsar, that is circling and slowly consuming a smaller companion star, as its arachnid namesake does to its mate.

Astronomers know of about two dozen black widow binaries in the Milky Way. This newest candidate, named ZTF J1406+1222, has the shortest orbital period yet identified, with the pulsar and companion star circling each other every 62 minutes. The system is unique in that it appears to host a third, far-flung star that orbits around the two inner stars every 10,000 years.

This likely triple black widow is raising questions about how such a system could have formed. Based on its observations, the MIT team proposes an origin story: As with most black widow binaries, the triple system likely arose from a dense constellation of old stars known as a globular cluster. This particular cluster may have drifted into the Milky Way's center, where the gravity of the central black hole was enough to pull the cluster apart while leaving the triple black widow intact.

"It's a complicated birth scenario," says Kevin Burdge, a Pappalardo Postdoctoral Fellow in MIT's Department of Physics. "This system has probably been floating around in the Milky Way for longer than the sun has been around."

Burdge is the author of a study appearing in Nature that details the team's discovery. The researchers used a new approach to detect the triple system. While most black widow binaries are found through the gamma and X-ray radiation emitted by the central pulsar, the team used visible light, and specifically the flashing from the binary's companion star, to detect ZTF J1406+1222.

"This system is really unique as far as black widows go, because we found it with visible light, and because of its wide companion, and the fact it came from the galactic center," Burdge says. "There's still a lot we don't understand about it. But we have a new way of looking for these systems in the sky."

The study's co-authors are collaborators from multiple institutions, including the University of Warwick, Caltech, the University of Washington, McGill University, and the University of Maryland.

Day and night
Black widow binaries are powered by pulsars - rapidly spinning neutron stars that are the collapsed cores of massive stars. Pulsars have a dizzying rotational period, spinning around every few milliseconds, and emitting flashes of high-energy gamma and X-rays in the process.

Normally, pulsars spin down and die quickly as they burn off a huge amount of energy. But every so often, a passing star can give a pulsar new life. As a star nears, the pulsar's gravity pulls material off the star, which provides new energy to spin the pulsar back up. The "recycled" pulsar then starts reradiating energy that further strips the star, and eventually destroys it.

"These systems are called black widows because of how the pulsar sort of consumes the thing that recycled it, just as the spider eats its mate," Burdge says.

Every black widow binary to date has been detected through gamma and X-ray flashes from the pulsar. In a first, Burdge came upon ZTF J1406+1222 through the optical flashing of the companion star.

It turns out that the companion star's day side - the side perpetually facing the pulsar - can be many times hotter than its night side, due to the constant high-energy radiation it receives from the pulsar.

"I thought, instead of looking directly for the pulsar, try looking for the star that it's cooking," Burdge explains.

He reasoned that if astronomers observed a star whose brightness was changing periodically by a huge amount, it would be a strong signal that it was in a binary with a pulsar.

Star motion
To test this theory, Burdge and his colleagues looked through optical data taken by the Zwicky Transient Facility, an observatory based in California that takes wide-field images of the night sky. The team studied the brightness of stars to see whether any were changing dramatically by a factor of 10 or more, on a timescale of about an hour or less - signs that indicate the presence of a companion star orbiting tightly around a pulsar.

The team was able to pick out the dozen known black widow binaries, validating the new method's accuracy. They then spotted a star whose brightness changed by a factor of 13, every 62 minutes, indicating that it was likely part of a new black widow binary, which they labeled ZTF J1406+1222.

They looked up the star in observations taken by Gaia, a space telescope operated by the European Space Agency that keeps precise measurements of the position and motion of stars in the sky. Looking back through decades old measurements of the star? from the Sloan Digital Sky Survey, the team found that the binary was being trailed by another distant star. Judging from their calculations, this third star appeared to be orbiting the inner binary every 10,000 years.

Curiously, the astronomers have not directly detected gamma or X-ray emissions from the pulsar in the binary, which is the typical way in which black widows are confirmed. ZTF J1406+1222, therefore, is considered a candidate black widow binary, which the team hopes to confirm with future observations.

"The one thing we know for sure is that we see a star with a day side that's much hotter than the night side, orbiting around something every 62 minutes," Burdge says. "Everything seems to point to it being a black widow binary. But there are a few weird things about it, so it's possible it's something entirely new."

The team plans to continue observing the new system, as well as apply the optical technique to illuminate more neutron stars and black widows in the sky.

Research Report:"A 62-minute orbital period black widow binary in a wide hierarchical triple"


Related Links
Department of Physics
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
New technique to discover brightest radio pulsars outside our own galaxy
Canberra, Australia (The Conversaton) May 03, 2022
When a star explodes and dies in a supernova, it takes on a new life of sorts. Pulsars are the extremely rapidly rotating objects left over after massive stars have exhausted their fuel supply. They are extremely dense, with a mass similar to the Sun crammed into a region the size of Sydney. Pulsars emit beams of radio waves from their poles. As those beams sweep across Earth, we can detect rapid pulses as often as hundreds of times per second. With this knowledge, scientists are always on t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Relations on ISS not changed following Russia's Invasion of Ukraine

Ariel Ekblaw on building beautiful architecture in space

Students compete to improve everyday life on the Space Station

Blue Origin NS-21 to fly six customer astronauts

STELLAR CHEMISTRY
Roscosmos boss calls to hold Elon Musk 'accountable' for supporting Ukraine 'fascists'

Virgin Orbit announces next launch, dubbed 'Straight Up'

UK blogger detained in Baikonur confirms release from custody after issued fine

Virgin Orbit to expand fleet with modification of second airborne satellite launchpad

STELLAR CHEMISTRY
Chinese rover detects water existed on Mars more recently than thought

Multi Part Driving and More - Sols 3469-3470

NASA's InSight Records Monster Quake on Mars

Sliding Into the Weekend Like - Sols 3466-3468

STELLAR CHEMISTRY
China's cargo craft docks with space station combination

China prepares to launch Tianzhou-4 cargo spacecraft

China launches the Tianzhou 4 cargo spacecraft

China launches Jilin-1 commercial satellites

STELLAR CHEMISTRY
Kepler provides on-orbit high-capacity data service to Spire Global

Plans unveiled to better connect space industries in Scotland and the UAE

NASA selects SES Government Solutions to support Near-Earth communications

Rocket Lab launches BRO-6 for Unseenlabs

STELLAR CHEMISTRY
Unpacking black-box models

Failed eruptions are at the origin of copper deposits

Reusable UV sensor films - TU Dresden spin-off project PRUUVE launched

Unexpected bubbleology

STELLAR CHEMISTRY
Planet-forming disks evolve in surprisingly similar ways

Experiments measure freezing point of extraterrestrial oceans to aid search for life

Researchers reveal the origin story for carbon-12, a building block for life

SwRI-led team finds younger exoplanets better candidates when looking for other Earths

STELLAR CHEMISTRY
Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter

Greenland Ice, Jupiter Moon Share Similar Feature

Search for life on Jupiter moon Europa bolstered by new study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.