. 24/7 Space News .
ICE WORLD
Antarctic glaciers losing ice at fastest rate for 5,500 years, finds study
by Staff Writers
London, UK (SPX) Jun 10, 2022

It's downhill in all directions.

At the current rate of retreat the vast glaciers, which extend deep into the heart of the ice sheet, could contribute as much as 3.4 metres to global sea level rise over the next several centuries.

Antarctica is covered by two huge ice masses: the East and West Antarctic Ice Sheets, which feed many individual glaciers. Because of the warming climate, the WAIS has been thinning at accelerated rates over the past few decades. Within the ice sheet, the Thwaites and Pine Island glaciers are particularly vulnerable to global warming and are already contributing to rises in sea level.

Now, a new study led by the University of Maine and the British Antarctic Survey, including academics from Imperial College London, has measured the rate of local sea level change - an indirect way to measure ice loss - around these particularly vulnerable glaciers.

They found that the glaciers have begun retreating at a rate not seen in the last 5,500 years. With areas of 192,000 km2 (nearly the size of the island of Great Britain) and 162,300 km2 respectively, the Thwaites and Pine Island glaciers have the potential to cause large rises in global sea level.

Co-author Dr Dylan Rood of Imperial's Department of Earth Science and Engineering said: "We reveal that although these vulnerable glaciers were relatively stable during the past few millennia, their current rate of retreat is accelerating and already raising global sea level.

"These currently elevated rates of ice melting may signal that those vital arteries from the heart of the West Antarctic Ice Sheet have been ruptured, leading to accelerating flow into the ocean that is potentially disastrous for future global sea level in a warming world. Is it too late to stop the bleeding?"

Searching seashells
During the mid-Holocene period, over 5,000 years ago, the climate was warmer than today and thus sea levels were higher and glaciers smaller. The researchers wanted to study fluctuations in sea level since the mid-Holocene, so studied the remnants of old Antarctic beaches, which are today elevated above modern sea level.

They examined seashells and penguin bones on these beaches using radiocarbon dating - a technique that uses the radioactive decay of carbon locked in the shells and bones as a clock to tell us how long they have sat above sea level.

When heavy glaciers sit on the land, they push down or 'load' the Earth's surface. After the glaciers' ice melts or 'unloads', the land 'bounces back' so that what once was a beach is now higher than sea level. This explains why the local sea level for this land fell, while globally the water from the melting ice caused global sea levels to rise.

By pinpointing the precise age of these beaches, they could tell when each beach appeared and therefore reconstruct changes in local, or 'relative', sea level over time.

The results showed a steady fall in relative sea level over the last 5,500 years, which the researchers interpret as a result of ice loss just prior to that time. This pattern is consistent with relatively stable glacier behaviour with no evidence of large-scale glacier loss or advance.

They also showed that the rate of relative sea-level fall since the mid-Holocene was almost five times smaller than that measured today. The scientists found that the most likely reason for such a large difference is recent rapid ice mass loss.

The researchers also compared their results to existing global models of the dynamics between ice and the Earth's crust. Their data showed that the models did not accurately represent the sea-level rise history of the area during mid- to late-Holocene based on their data. This study helps to paint a more accurate picture of the history of the region.

Although their data do not exclude the possibility of minor fluctuations of the Thwaites and Pine Island glaciers over the past 5,500 years, the researchers concluded that the simplest interpretation of their data is that these glaciers have been relatively stable since the mid-Holocene until recent times - and that the present-day rate of glacier retreat that has doubled over the past 30 years is, indeed, unprecedented over the last 5,500 years.

Lead author Professor Brenda Hall of the University of Maine said: "Relative sea-level change allows you to see large-scale crustal loading and unloading by ice. For example, glacier readvance, which would result in crustal loading, would slow the rate of relative sea-level fall or potentially even cause submergence of the land below sea level."

Stopping the bleeding
To better forecast the future fate of the ice sheet and its impact on global sea level, the International Thwaites Glacier Collaboration (ITGC) - the largest joint UK-US programme of field science ever conducted in Antarctica - which Imperial researchers are involved with, will improve our understanding of the past behaviour of the Thwaites glacier during climate conditions similar to today.

Research Report:"Relative sea-level data preclude major late Holocene ice-mass change in Pine Island Bay"


Related Links
Imperial College London
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Scientists shine new light on role of Earth's orbit in the fate of ancient ice sheets
Cardiff UK (SPX) May 27, 2022
In a new study published in the journal Science, the team from Cardiff University has been able to pinpoint exactly how the tilting and wobbling of the Earth as it orbits around the Sun has influenced the melting of ice sheets in the Northern Hemisphere over the past 2 million years or so. Scientists have long been aware that the waxing and waning of massive Northern Hemisphere ice sheets results from changes in the geometry of Earth's orbit around the Sun. There are two aspects of the Earth ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
NASA Moon Mission Set to Break Record in Navigation Signal Test

Bezos's Blue Origin makes 5th crewed flight into space

Bill Nelson, Mark Kelly praise how ASU involves students in missions

NASA awards two contracts for next generation spacesuits

ICE WORLD
NASA Supplier Completes Manufacturing Artemis III SLS Booster Motors

NRL CIRCE spacecraft to be part of historic UK launch

NASA rolls SLS moon rocket back out to Kennedy Space Center launch pad

Subscale booster motor for future Artemis missions fires up at Marshall

ICE WORLD
Keeping Our Sense of Direction: Dealing With a Dead Sensor

Mars is all shook up

Perseverance Has a Pet Rock!

NASA's MAVEN spacecraft resumes science and operations, exits safe mode

ICE WORLD
Shenzhou XIV astronauts transporting supplies into space station

Three Chinese astronauts arrive at space station

China sends three astronauts to complete space station

China sends three astronauts to Tiangong Space Station

ICE WORLD
China launches nine Geely-01 satellites

Axiom Space signs MOU with Italy to expand commercial utilization of space

Omnispace Spark-2 satellite launched into orbit

OneWeb satellite to be deorbited at the end of its active lifetime

ICE WORLD
Irvine scientists observe effects of heat in materials with atomic resolution

Styrofoam-munching superworms could hold key to plastic upcycling

Recovering rare-earth elements from e-waste

Superworms capable of munching through plastic waste

ICE WORLD
Asteroid samples contain 'clues to origin of life': Japan scientists

Close encounter more than 10,000 years ago stirred up spirals in accretion disk

Plato's cave: vacuum test for exoplanet detection

Extraterrestrial civilizations may colonize the Galaxy even if they don't have starships

ICE WORLD
Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.