. 24/7 Space News .
IRON AND ICE
Ancient asteroid grains provide insight into the evolution of our solar system
by Staff Writers
Didcot UK (SPX) Dec 20, 2022

Image taken at E01 ePSIC of Ryugu serpentine and Fe oxide minerals.

The UK's national synchrotron facility, Diamond Light Source, was used by a large, international collaboration to study grains collected from a near-Earth asteroid to further our understanding of the evolution of our solar system.

Researchers from the University of Leicester brought a fragment of the Ryugu asteroid to Diamond's Nanoprobe beamline I14 where a special technique called X-ray Absorption Near Edge Spectroscopy (XANES) was used to map out the chemical states of the elements within the asteroid material, to examine its composition in fine detail. The team also studied the asteroid grains using an electron microscope at Diamond's electron Physical Science Imaging Centre (ePSIC).

Julia Parker is the Principal Beamline Scientist for I14 at Diamond. She said: "The X-ray Nanoprobe allows scientists to examine the chemical structure of their samples at micron to nano lengthscales, which is complemented by the nano to atomic resolution of the imaging at ePSIC. It's very exciting to be able to contribute to the understanding of these unique samples, and to work with the team at Leicester to demonstrate how the techniques at the beamline, and correlatively at ePSIC, can benefit future sample return missions."

The data collected at Diamond contributed to a wider study of the space weathering signatures on the asteroid. The pristine asteroid samples enabled the collaborators to explore how space weathering can alter the physical and chemical composition of the surface of carbonaceous asteroids like Ryugu.

The researchers discovered that the surface of Ryugu is dehydrated and that it is likely that space weathering is responsible. The findings of the study, published in Nature Astronomy, have led the authors to conclude that asteroids that appear dry on the surface may be water-rich, potentially requiring revision of our understanding of the abundances of asteroid types and the formation history of the asteroid belt.

Ryugu is a near-Earth asteroid, around 900 metres in diameter, first discovered in 1999 within the asteroid belt between Mars and Jupiter. It is named after the undersea palace of the Dragon God in Japanese mythology. In 2014, the Japanese state space agency JAXA launched Hayabusa2, an asteroid sample-return mission, to rendezvous with the Ryugu asteroid and collect material samples from its surface and sub-surface.

The spacecraft returned to Earth in 2020, releasing a capsule containing precious fragments of the asteroid. These small samples were distributed to labs around the world for scientific study, including the University of Leicester's School of Physics and Astronomy and Space Park where John Bridges, one of the authors on the paper, is a Professor of Planetary Science.

John said: "This unique mission to gather samples from the most primitive, carbonaceous, building blocks of the Solar System needs the world's most detailed microscopy, and thats why JAXA and the Fine Grained Mineralogy team wanted us to analyse samples at Diamond's X-ray nanoprobe beamline. We helped reveal the nature of space weathering on this asteroid with micrometeorite impacts and the solar wind creating dehydrated serpentine minerals, and an associated reduction from oxidised Fe3+ to more reduced Fe2+.

It's important to build up experience in studying samples returned from asteroids, as in the Hayabusa2 mission, because soon there will be new samples from other asteroid types, the Moon and within the next 10 years Mars, returned to Earth. The UK community will be able to perform some of the critical analyses due to our facilities at Diamond and the electron microscopes at ePSIC."

The building blocks of Ryugu are remnants of interactions between water, minerals and organics in the early Solar System prior to the formation of Earth. Understanding the composition of asteroids can help explain how the early solar system developed, and subsequently how the Earth formed. They may even help explain how life on Earth came about, with asteroids believed to have delivered much of the planet's water as well as organic compounds such as amino acids, which provide the fundamental building blocks from which all human life is constructed.

The information that is being gleaned from these tiny asteroid samples will help us to better understand the origin not only of the planets and stars but also of life itself. Whether it's fragments of asteroids, ancient paintings or unknown virus structures, at the synchrotron, scientists can study their samples using a machine that is 10,000 times more powerful than a traditional microscope.

Research Report:A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu


Related Links
Diamond Light Source
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Asteroid Ryugu samples continue to shed light on solar system history
Paris, France (SPX) Dec 13, 2022
Nearly two years after Japanese mission Hayabusa2 returned to Earth, samples from asteroid Ryugu continue to reveal valuable information about the history of the early solar system. A study by scientists from the Institut de Physique du Globe de Paris, Universite Paris Cite and CNRS1, as part of an international consortium, reveals the isotopic composition of zinc and copper of asteroid Ryugu. The isotopic signatures show that Ryugu's composition is close to Ivuna-like carbonaceous chondrites, and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Russia might send up rescue ship for ISS crew

NASA delays spacewalk because of debris

NASA, Russian space agency evaluate need for space station rescue mission

Russian space chief praises US after ISS coolant leak

IRON AND ICE
Inauguration of mainland Europe's first satellite launch complex

Virgin Orbit' Launcherone Systems given green light for upcoming mission

Exploration power for the Moon, Mars, and Beyond

Young ESA team prepare Ariane 6 passenger

IRON AND ICE
The 10 Days of Christmas: Sols 3689-3698

MOXIE sets consecutive personal bests and Mars records for oxygen production

Leaving the Amapari Drill Site: Sol 3687

InSight goes silent as Martian dust and cold ends mission

IRON AND ICE
China's space sector set to rocket into future

Chinese space-tracking ship sets sail for new missions

China's space station Tiangong enters new phase of application, development

China's new space station opens for business in an increasingly competitive era of space activity

IRON AND ICE
Chinese commercial space company to launch stackable satellites

Iridium introduces its latest IoT data service

US space entities examine future space technology

Voyager Space signs MoU with Canadian Space Agency

IRON AND ICE
Space junk bill passes Senate unanimously

NASA, Alaska researchers to scan asteroid with radio waves

Making the unimaginable possible in materials discovery

Elucidating the mechanism of high proton conduction to develop clean energy materials

IRON AND ICE
What it would take to discover life on Saturn's icy moon Enceladus

Assembly begins on NASA's next tool to study exoplanets

Kepler's first exoplanet is spiraling toward its doom

Two exoplanets may be mostly water, Hubble and Spitzer find

IRON AND ICE
Juno spacecraft recovering memory after 47th Flyby of Jupiter

Four decade study finds mysterious patterns in temperatures at Jupiter

Comet impacts could bring ingredients for life to Europa's ocean

Juno exploring Jovian moons during extended mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.