. 24/7 Space News .
STELLAR CHEMISTRY
A star in a distant galaxy blew up in a powerful explosion, solving an astronomical mystery
by Staff Writers
Tel-Aviv, Israel (SPX) Jul 15, 2021

Hubble Space Telescope color composite of the electron-capture supernova 2018zd and the host starburst galaxy NGC 2146.

Dr. Iair Arcavi, a Tel Aviv University researcher at the Raymond and Beverly Sackler Faculty of Exact Sciences, participated in a study that discovered a new type of stellar explosion - an electron-capture supernova. While they have been theorized for 40 years, real-world examples have been elusive. Such supernovas arise from the explosions of stars 8-9 times the mass of the sun. The discovery also sheds new light on the thousand-year mystery of the supernova from A.D. 1054 that was seen by ancient astronomers, before eventually becoming the Crab Nebula, that we know today.

A supernova is the explosion of a star following a sudden imbalance between two opposing forces that shaped the star throughout its life. Gravity tries to contract every star. Our sun, for example, counter balances this force through nuclear fusion in its core, which produces pressure that opposes the gravitational pull.

As long as there is enough nuclear fusion, gravity will not be able to collapse the star. However, eventually, nuclear fusion will stop, just like gas runs out in a car, and the star will collapse. For stars like the sun, the collapsed core is called a white dwarf. This material in white dwarfs is so dense that quantum forces between electrons prevent further collapse.

For stars 10 times more massive than our sun, however, electron quantum forces are not enough to stop the gravitational pull, and the core continues to collapse until it becomes a neutron star or a black hole, accompanied by a giant explosion. In the intermediate mass range, the electrons are squeezed (or more accurately, captured) onto atomic nuclei. This removes the electron quantum forces, and causes the star to collapse and then explode.

Historically, there have been two main supernova types. One is a thermonuclear supernova - the explosion of a white dwarf star after it gains matter in a binary star system. These white dwarfs are the dense cores of ash that remain after a low-mass star (one up to about 8 times the mass of the sun) reaches the end of its life.

Another main supernova type is a core-collapse supernova where a massive star - one more than about 10 times the mass of the sun - runs out of nuclear fuel and has its core collapsed, creating a black hole or a neutron star. Theoretical work suggested that electron-capture supernovae would occur on the borderline between these two types of supernovae.

That's the theory that was developed in the 1980's by Ken'ichi Nomoto of the University of Tokyo, and others. Over the decades, theorists have formulated predictions of what to look for in an electron-capture supernova. The stars should lose a lot of mass of particular composition before exploding, and the supernova itself should be relatively weak, have little radioactive fallout, and produce neutron-rich elements.

The new study, published in Nature Astronomy, focuses on the supernova SN2018zd, discovered in 2018 by Japanese amateur astronomer Koihchi Itagaki. Dr. Iair Arcavi, of the astrophysics department at Tel Aviv University, also took part in the study. This supernova, located in the galaxy NGC 2146, has all of the properties expected from an electron-capture supernova, which were not seen in any other supernova.

In addition, because the supernova is relatively nearby - only 31 million light years away - the researchers were able to identify the star in pre-explosion archival images taken by the Hubble Space Telescope. Indeed, the star itself also fits the predictions of the type of star that should explode as an electron-capture supernovae, and is unlike stars that were seen to explode as the other types of supernovae.

While some supernovae discovered in the past had a few of the indicators predicted for electron-capture supernovae, only SN2018zd had all six - a progenitor star that fits within the expected mass range, strong pre-supernova mass loss, an unusual chemical composition, a weak explosion, little radioactivity, and neutron-rich material.

"We started by asking 'what's this weirdo?'" said Daichi Hiramatsu of the University of California Santa Barbara and Las Cumbres Observatory, who led the study. "Then we examined every aspect of SN 2018zd and realized that all of them can be explained in the electron-capture scenario."

The new discoveries also illuminate some mysteries of one of the most famous supernovae of the past. In A.D. 1054 a supernova happened in our own Milky Way Galaxy, and according to Chinese and Japanese records, it was so bright that it could be seen in the daytime and cast shadows at night.

The resulting remnant, the Crab Nebula, has been studied in great detail, and was found to have an unusual composition. It was previously the best candidate for an electron-capture supernova, but this was uncertain partly because the explosion happened nearly a thousand years ago. The new result increases the confidence that the historic 1054 supernova was an electron-capture supernova.

"It's amazing that we can shed light on historical events in the Universe with modern instruments," says Dr. Arcavi. "Today, with robotic telescopes that scan the sky in unprecedented efficiency, we can discover more and more rare events which are critical for understanding the laws of nature, without having to wait 1000 years between one event and the next."

Research paper


Related Links
Tel-Aviv University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
A meteorite witness to the solar system's birth
St. Louis MO (SPX) Jul 07, 2021
In 2011, scientists confirmed a suspicion: There was a split in the local cosmos. Samples of the solar wind brought back to Earth by the Genesis mission definitively determined oxygen isotopes in the sun differ from those found on Earth, the moon and the other planets and satellites in the solar system. Early in the solar system's history, material that would later coalesce into planets had been hit with a hefty dose of ultraviolet light, which can explain this difference. Where did it come from? ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
How can you become a space tourist?

Who's who on Blue Origin's first crewed flight

Blue Origin's first crewed flight minted four new astronauts

World's richest man Jeff Bezos blasts into space

STELLAR CHEMISTRY
Long March 2C rocket carrying four satellites launched

Thruster research to help propel spacecraft

NASA conducts 5th test in RS-25 series

Umbra awarded $950M IDIQ contract following Space-X launch

STELLAR CHEMISTRY
ExoMars orbiter continues hunt for key signs of life on Mars

Perseverance rover begins hunt for signs of Martian life

NASA Perseverance Mars Rover to acquire first sample

NASA rover preparing to take first Mars rock samples

STELLAR CHEMISTRY
China's five-star red flag flies proudly on red planet

China's Commercial Space Industry

Exercise bike in space helps keep crew fit

Homemade spacesuits ensure safety of Chinese astronauts in space

STELLAR CHEMISTRY
Funding partnerships launch the UK-Australia Space Bridge

Space, the final frontier for billionaire Richard Branson

Department of Space's commercial arm NewSpace India can also lease ISRO assets

OneWeb and BT to explore rural connectivity solutions for UK

STELLAR CHEMISTRY
Britain supports U.S. plan for deep space radar station

D-Orbit signs contract with the European Space Agency under the Boost! Project

New material could mean lightweight armor, protective coatings

Reprogrammable satellite fuelled prior to launch

STELLAR CHEMISTRY
First measurement of isotopes in atmosphere of exoplanet

From the sun to the stars: A journey of exoplanet discovery begins

Planetary shields will buckle under stellar winds from their dying stars

Brainless slime molds 'think' their way through the environment

STELLAR CHEMISTRY
Juno tunes into Jovian radio triggered by Jupiter's volcanic moon Io

Ride with Juno as it flies past Jupiter and Ganymede

The mystery of what causes Jupiter's X-ray auroras is solved

Surface of Jupiter's moon Europa churned by small impacts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.