. 24/7 Space News .
CHIP TECH
A new hope of quantum computers for factorizations of RSA with a thousand-fold excess
by Staff Writers
Beijing, China (SPX) Apr 09, 2019

D-Wave quantum computer (D-Wave website).

There are two types of quantum computers: universal quantum computers and dedicated ones, the state-of-the-art one of which is the commercial quantum computer developed by D-Wave Quantum Computing Company in Canada. It has been considered that the Shor's algorithm could be viewed as the unique and powerful quantum algorithm for cryptanalysis of RSA (widely used in e-government and e-commerce) while various media and researchers have pointed out that RSA would been as soon collapsed as the emergence of universal quantum computers.

However, Nature[1] and Science reported[2, 3] universal quantum computer wont's be working successfully before a long period. Both Prof. John Martinis[2] (UC Santa Barbara, joining Google since 2014) and Prof. Matthias Troyer[1] (now as the principal researcher of Microsoft's quantum computing program) also agreed that it would be years before the quantum computers are able to achieve some practical applications, including the code-cracking.

Under the project of the Key Program of National Natural Science Foundation of China, Chao Wang's team of Shanghai University has devoted itself to the factoring problems by using D-Wave quantum computer, in developing a new way based on deciphering RSA by quantum computing, although the D-Wave machine has nothing to do with the cryptography at the beginning, which is initially used only for image processing (Google), software verification (Lockheed Martin) and some more areas.

Wang's team showed optimistic potentials of quantum annealing algorithm and D-Wave quantum computer for deciphering the RSA cryptosystem. Furthermore, the team has also shown that the D-Wave machine may have some more powerful attack of cracking practical RSA codes than by using Shor's algorithm in a universal quantum computer.

Even if, recently the latest IBM Q System One (Jan 8. 2019) has declared that it can effectively implement Shor's algorithm, it could factor up to 10-bit integers in theory, whereas D-Wave can factor even 20-bit integers (with a thousand-fold excess). In fact, current quantum-circuit-based quantum chips, including the Google's 72 qubit quantum computer "Bristlecone", are limited by many factors such as error correction that they haven't provided the evidence of being able to realize the factorization yet.

The research results will be published on SCIENCE CHINA Physics, Mechanics and Astronomy (vol. 62, 6. Corresponding author: Chao Wang), highlighted [4] by Xin-Mei Wang, the honorary director of CACR (Chinese Association for Cryptologic Research).

1/ How the quantum tunneling can help D-Wave machine establish superiority over others?

The D-Wave One machine was emerged in 2011, which works near absolute zero (15 mK) with very low power consumption (25kW for the moment), far less than the power of high-performance computers, the development of which is limited by Moore's Law and Dennard scaling.

As shown in the Fig. 2, D-Wave quantum annealing algorithm, working near absolute zero, can activate the quantum tunneling effects, allowing for jumping from the local sub-optimum to approximate, or even achieving, the global optimum in the exponential-scale searching space, which is the unique advantage of D-Wave machine compared to the other classical ones.

Quantum tunneling effect means that the quantum fluctuations enable the quantum directly penetrate through the barrier with higher energy than itself. The quantum states can change their self-rotations directions by two different ways: as the result of quantum fluctuations and/or thermal fluctuations.

The thermal annealing will break the quantum states so that the quantum system requires the tunneling procedure only affected by quantum fluctuations. Actually, the thermal dynamics of qubits and quantum tunneling effect have their own freeze-out time respectively.

The quantum annealing depends on the energy difference between the ground state and the second first excited state. Cooling down the system until both the quantum tunneling and thermal fluctuations eventually cease, then the system can obtain the final quantum state. By repeating the cooling procedure under different temperatures, the system can effectively realize quantum computing by quantum annealing.

2/ Why the potentials of D-Wave for code-cracking have been ignored?

Lockheed Martin Corporation, a global munitioner, first entered into an agreement to purchase D-Wave One for most challenging computation problems, like finding error codes from an F-16 aircraft (F-35[5] in future).

Then, researchers from Google, NASA, Los Alamos National Laboratory, Harvard University, and Tohoku University applied the D-Wave annealer to more than 100 applications spanning image processing, protein folding, traffic flow optimization, air traffic control, tsunami evacuation etc. Thus, this is why the applications of D-Wave quantum computer on cryptography design and analysis have been ignored.

In accordance with the analysis of Google, people within our circles considered that the dedicated quantum computers with quantum annealing technology are extreme importance to the information technology. This is because the quantum computers can find approximate answers to a kind of important problems in computer science, which can only be truly solved by exhaustively trying every possible solution. Therefore, it has laid down a solid foundation for the cryptographic applications by quantum annealing.

Prof. Xin-Mei Wang pointed out in the highlight [4] that it is important to explore the potential of D-Wave quantum computer for attacking other cryptosystems. It is well-known that there are three kinds of practical difficulties for constructing highly secure cryptography.

Other than the difficulty of factoring problems, the discrete logarithm problem and elliptical discrete logarithm problem (like ECC, the basis for the second-generation identity card in China) provide a stronger way to resist the attacks from the quantum computers than others. Thus, the feasibility of D-Wave quantum computer for solving the latter two problems should be further considered.

3/ What else can D-Wave machine do?

In late 2017, Professor Wang's group first realized the cryptographic components designing experiments via D-Wave 2000Q System by transforming the cryptographic functions design problem with multiple criteria to multi-object optimization problems so that the mathematical problem can be mapped to an optimization problem by searching in the exponential-scale solutions space.

Although D-Wave machine is designed for special purpose, different from the universal quantum computer, we think it can be widely used in various areas, which is completely different from the early version of classical computers in the early stage of the development of electronic computers. Currently, D-Wave has received multi-round investments since 2013, including In-Q-Tel (supporting Central Intelligence Agency), and aims at practically commercialized applications.

D-Wave is designed ingeniously to realize the quantum annealing with quantum tunneling effects that enables some NP problems to be able to potentially solve in polynomial time. Nature reported it can be widely used in many areas, including cryptography, image processing, pattern recognition and machine learning, financial analysis, bioinformatics, emotion analysis, and so on.

Google is further exploring the combination of D-Wave quantum computer and self-driving cars towards an intelligent way more similar to the human brain for obstacle recognition and better navigation. On the other hand, Volkswagen and Chao Wang's group are also devoted themselves to the quantum applications of smart transportation.

We firmly believe that physicists will collaborate with information scientists to develop more applications on smart city and urban refined management over next decade.

Research Report: Factoring larger integers with fewer qubits via quantum annealing with optimized parameters, Sci. China-Phys. Mech. Astron. 62(6), 060311 (2019)

Reference
[1] Elizabeth Gibney. Physics: quantum computer quest. Nature News Feature 516: 25-26. Dec. 3 2014.

[2] Adrian Cho. DOE pushes for useful quantum computing. Science 359, 6372: 141-142. Jan. 12 2018.

[3] Jeffrey Brainard. What's coming up in 2018. Science 359, 6371: 10-12. Jan. 05 2018.

[4] X. M. Wang, Quest towards"factoring larger integers with commercial D-Wave quantum annealing machines", Sci. China-Phys. Mech. Astron. 62, 060331 (2019).

[5]George Leopold. Quantum leaps needed for new computer approach. Defense System. Dec. 09 2016.


Related Links
Science China Press
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
DARPA Announces Second Annual ERI Summit
Washington DC (SPX) Apr 08, 2019
Since its official announcement on June 1, 2017, DARPA's Electronics Resurgence Initiative (ERI) has sought to advance the development of a specialized, secure, and heavily automated electronics industry. ERI - a five-year, upwards of $1.5B investment to enable far-reaching improvements in electronics performance - has fostered collaborations among the commercial electronics sector, defense industrial base, and university researchers. As ERI enters its second year, DARPA seeks to reconvene the ele ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Company Claims Orbital Hotel to Host 400 Space Tourists Will Be Operational By 2025

Europe Unlikely to Abandon Soyuz Once US Revives Space Shuttles - German Space Center

UAE Wants to Train More Astronauts for Arab World - Emirati Official

Space Station science return and spacecraft shuffle

CHIP TECH
Russia Launches Rokot Space Rocket to Orbit Military Satellite

Trump says US 'not involved' in Iranian rocket failure

Engine Section for NASA's SLS Rocket Moved for Final Integration

US Sanctions Iran's Space Agency, Space Research Centre Days After Failed Satellite Launch

CHIP TECH
NASA engineers attach Mars Helicopter to Mars 2020 rover

ESA Chief says discussed ExoMars 2020 launch with Roscosmos

NASA Invites Students to Name Next Mars Rover

NASA's Mars Helicopter Attached to Mars 2020 Rover

CHIP TECH
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

CHIP TECH
Private Chinese firms tapping international space market

Iridium and Thales Expand Partnership to Deliver Aircraft Connectivity Services

ESA re-routes satellite to avoid SpaceX collision risk

Cutting-edge Chinese satellite malfunctions after launch

CHIP TECH
ESA spacecraft dodges large constellation

Smarter experiments for faster materials discovery

China's Tianhe-2 Supercomputer to Crunch Space Data From New Radio Telescope

Defrosting surfaces in seconds

CHIP TECH
Planetary collisions can drop the internal pressures in planets

Potassium Detected in an Exoplanet Atmosphere

Deep-sea sediments reveal solar system chaos: An advance in dating geologic archives

Exoplanets Can't Hide Their Secrets from Innovative New Instrument

CHIP TECH
Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms

Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.