. 24/7 Space News .
TIME AND SPACE
A blue spark to shine on the origin of the Universe
by Staff Writers
Leioa, Spain (SPX) Jun 24, 2020

Artistic representation of the new fluorescent molecule that can shed light on the elusive nature of neutrinos.

Why is our Universe made of matter? Why does everything exist as we know it? These questions are linked to one of the most important unsolved problems in particle physics. This problem is that of the nature of the neutrino, which could be its own antiparticle, as argued by the unfortunate Italian genius Ettore Majorana almost a century ago. If this were so, it could explain the mysterious cosmic asymmetry between matter and antimatter.

Indeed, we know that the Universe is made almost exclusively of matter. However, the Big Bang theory predicts that the early Universe contained the same amount of matter and antimatter particles. This prediction is consistent with the "small Big Bangs" that form in proton collisions at CERN's giant LHC accelerator, where a symmetrical production of particles and antiparticles is always observed. So, where did the antimatter of the early Universe go? A possible mechanism points to the existence of heavy neutrinos that were its own antiparticle, and therefore, could decay into both matter and antimatter.

If a second phenomenon occurs, called violation of charge and parity (that is, if the neutrino slightly favors in its decay the production of matter over that of antimatter), then it could have injected an excess of the first over the second. After all the matter and antimatter in the Universe were annihilated (with the exception of this small excess), the result would be a cosmos made only of matter, of the leftovers from the Big Bang. We could say that our Universe is the remnant of a shipwreck.

It is possible to demonstrate that the neutrino is its own antiparticle by observing a rare type of nuclear process called neutrinoless double beta decay (bb0nu), in which concurrently two neutrons (n) of the nucleus are transformed into protons (p) while two electrons (e) are emitted out of the atom.

This process can happen in some rare isotopes, such as Xenon-136, which has in its nucleus 54 p and 82 n, in addition to 54 e when is neutral. The NEXT experiment (directed by J.J. Gomez-Cadenas, DIPC and D. Nygren, UTA), located in the underground laboratory of Canfranc (LSC), looks for these decays using high pressure gas chambers.

When a Xe-136 atom undergoes spontaneous bb0nu decay, the result of the process is the production of a doubly charged ion of Barium-136 (Ba2+); with 54 e and a nucleus made of 56 p and 80 n; and two electrons (Xe a Ba2+ + 2e).

So far, the NEXT experiment has focused on observing these two electrons, whose signal is very characteristic of the process. However, the bb0nu process that is meant to be observed is extremely rare and the signal that is expected is of the order of one bb0nu decay per ton of gas and year of exposure. This very weak signal can be completely masked by background noise due to the ubiquitous natural radioactivity.

However, if in addition to observing the two electrons, the barium ionized atom is also detected, the background noise can be reduced to zero, since natural radioactivity does not produce this ion. The problem is that observing a single ion of Ba2+ in the midst of a large bb0nu detector is technically so challenging that until recently it was considered essentially unfeasible. However, a number of recent works, the latest of which has just been published in the journal Nature, suggest that the feat may be feasible after all.

The work, conceived and led by the researchers F.P. Cossio, Professor at the University of the Basque Country (UPV/EHU) and Scientific Director of Ikerbasque, and J.J. Gomez-Cadenas, Professor Ikerbasque at the Donostia International Physics Center (DIPC), includes an interdisciplinary team with scientists from DIPC, the UPV/EHU, Ikerbasque, the Optics Laboratory of the University of Murcia (LOUM), the Materials Physics Center (CFM, a joint center CSIC-UPV/EHU), POLYMAT, and the University of Texas at Arlington (UTA).

Gomez-Cadenas has pointed out that "the result of this interdisciplinary collaboration that combines, among other disciplines, particle physics, organic chemistry, surface physics and optics, is a clear example of the commitment that DIPC has recently shown to developing new research lines. The purpose is not only to generate knowledge in other fields, different from the centre's usual ones, but also to look for hybrid grounds and create interdisciplinary projects that, in many cases, like this one, can be the most genuine".

The research is based on the idea, proposed by one of the authors of the article, the prestigious scientist D. Nygren (inventor, among other devices of the Time Projection Chamber technology applied by many particle physics experiment, including NEXT). In 2016, Nygren proposed the feasibility to capture Ba2+ with a molecule capable of forming a supramolecular complex with it and to provide a clear signal when this occurs, thus yielding a suitable molecular indicator. Nygren and his group at UTA then went into designing "on-off" indicators, in which the signal of the molecule is highly enhanced when a supra-molecular complex is formed.

The group led by Cossio and Gomez-Cadenas has followed a different path, designing a fluorescent bicolor indicator (FBI) which combines a large intensity enhancement and a dramatic color shift when the molecule captures Ba2+. The synthesis of FBI was done under the direction of DIPC researcher I. Rivilla. If an FBI molecule with no barium is illuminated with ultraviolet light, it emits fluorescence in the range of green light, with a narrow emission spectrum of about 550 nm. However, when this molecule captures Ba2+, its emission spectrum shifts towards blue (420 nm). The combination of both features results in a spectacular enhancement of the signal, thus making it very suitable for a future Ba2+ detector.

It is interesting to note that the experimental multiphoton microscopy systems used in the LOUM by P. Artal's group for the green/blue spectral detection are based on those developed previously for imaging the cornea of the human eye in vivo. This is an example of interlacing the use of a unique technology in the world for biomedical applications on a fundamental problem of particle physics.

"The effort to combine basic science and new instrumental implementations is essential to open new research avenues to answer the many questions that we scientists ask ourselves every day," says J.M. Bueno, Professor of Optics at LOUM.

As Cossio has explained, "the most difficult task in the chemical part of the work was to design a new molecule that would meet the strict (almost impossible) requirements imposed by the NEXT experiment. This molecule had to be very bright, capture barium with extreme efficiency (bb0nu is a very rare event and no cation could be wasted) and emit a specific signal that would allow the capture to be detected without background noise.

In addition, the chemical synthesis of the new FBI sensor had to be efficient in order to have enough ultra-pure samples for installation within the detector. The most rewarding part was to check that, after many efforts by this multidisciplinary team, actually our specific and ultra-sensitive FBI sensor worked as planned".

Besides the design and characterization of FBI, the paper offers the first demonstration of the formation of a supramolecular complex in dry medium. This landmark result has been achieved preparing a layer of FBI indicators compressed over a silica pellet and evaporating over such a layer a salt of barium perchlorate. Z. Freixa, Ikerbasque Professor at the UPV/EHU says, with a smile: "the preparation of FBI on silica has been a quick-but-not-so-dirty solution for this proof of concept. A bit of home alchemy".

The vacuum sublimation experiment was done by the CSIC scientist at CFM C. Rogero and her student P. Herrero-Gomez. Rogero, an expert in physics of surfaces says: "it was one of those Eureka moment, when we realized that we had in my lab just the tools to carry on the experiment. We evaporated the perchlorate and got FBI shinning in blue almost at the first attempt"

The next step of this research project is the construction of an FBI based sensor for the detection of the neutrinoless double beta decay or bb0nu, for which Gomez-Cadenas, F. Monrabal from DIPC and D. Nygren and collaborators at UTA are developing a conceptual proposal.

This work is a significant advance towards building a future "barium-tagging" NEXT experiment to look for noise-free bb0nu events through the identification of the two electrons and the barium atom produced in the reaction. This experiment would have a great potential to find out if the neutrino is its own antiparticle, which could lead to answer fundamental questions about the origin of the Universe.

Research paper


Related Links
University Of The Basque Country
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Australian scientists reveal a lost 8 billion light years of universe evolution
Melbourne, Australia (SPX) Jun 19, 2020
Last year, the Advanced LIGO-VIRGO gravitational-wave detector network recorded data from 35 merging black holes and neutron stars. A great result - but what did they miss? According to Dr Rory Smith from the ARC Centre of Excellence in Gravitational Wave Discovery at Monash University in Australia - it's likely there are another 2 million gravitational wave events from merging black holes, "a pair of merging black holes every 200 seconds and a pair of merging neutron stars every 15 seconds" that scient ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA Reveals What Could Be Source of 'Elevated Benzene Level' on ISS

Amyloid formation in the International Space Station

Future space travelers may follow cosmic lighthouses

More Hands Make Light Work: Crew Dragon Duo Increases Science Tempo on Space Station

TIME AND SPACE
Launch postponement for Flight VV16 due to weather conditions at the Spaceport

Virgin Galactic signs agreement with NASA

NASA Prepares to Complete Artemis SLS Rocket Structural Testing

Australian professor wants local town to become hub for commercial space travel

TIME AND SPACE
NASA's new Mars mission will take at least a decade to confirm life

The Launch Is Approaching for NASA's Next Mars Rover, Perseverance

Martian rover motors ahead

Airbus wins next study contract for Martian Sample Fetch Rover

TIME AND SPACE
Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

TIME AND SPACE
NASA moving forward to enable a low-earth orbit economy

GomSpace enters agreement tp cancel spin-out project Aerial and Maritime

WA space project to drive industry growth

SES selects 2 US companies to build 4 satellites as part of Accelerated C-Band Clearing Plan

TIME AND SPACE
Reducing the risk of space debris collision

UK space sector gets a boost with the installation of a giant new satellite test chamber

Targeting the radiation hardened power electronics market for mission critical applications

Fish armor both tough and flexible

TIME AND SPACE
Young giant planet offers clues to formation of exotic worlds

Breakthrough listen releases list of "exotica"

New study to search universe for signs of technological civilizations

NASA scientist simulates sunsets on other worlds

TIME AND SPACE
Evidence supports 'hot start' scenario and early ocean formation on Pluto

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.