. 24/7 Space News .
PHYSICS NEWS
ASU and Virginia Tech researchers unlock mysteries of grasshopper response to gravity
by Staff Writers
Tempe AZ (SPX) Jan 14, 2020

This is a 3D microtomographic image of a grasshopper in a head-down position. The inflated air sacs in the abdomen are visible. The tomography was performed at Virginia Tech.

If you jump out of bed too quickly, you might feel a bit light-headed.

That's because when you're lying down, gravity causes your blood to pool in the lower parts of your body rather than in your brain. Fortunately, when you stand up, within a fraction of a second, your heart begins beating faster, moving the blood to your brain and allowing you to maintain your balance.

The opposite happens when you're standing on your head. Gravity causes the blood to rush to your brain, so your heart beats more slowly and the blood vessels leading to your brain constrict to prevent too much blood from building up there.

But insects don't have closed circulatory systems with vessels that can restrict fluid flow to certain parts of the body. So how do they control the effects of gravity when they need to climb a tree or hang upside down on a branch waiting for prey?

Arizona State University School of Life Sciences Professor Jon Harrison, along with Professor Jake Socha with Virginia Tech's College of Engineering, have published the first study that demonstrates how insects adjust their cardiovascular and respiratory activity in response to gravity. The findings appear in Proceedings of the National Academy of Sciences.

"Interestingly, this has never been looked at in invertebrates," Harrison said. "It's something I've always been interested in because the blood is not in vessels. It's an open circulatory system so the typical biologist would probably say, well the blood must just be sloshing around in there, but we actually don't know much about what's going on with blood circulation in insects."

But thanks to this study, he's now beginning to have an idea. Harrison and his colleagues took x-ray images of live insects and discovered that when grasshoppers were in a heads-up position, their heads were filled with open-air sacs and very little fluid (known as hemolymph or invertebrate blood). In their abdomens, it was the opposite: compressed air sacs and lots of fluid.

However, when grasshoppers have their heads down, their heads are filled with fluid and compressed air sacs while their abdomens have very little fluid and a lot of open-air sacs.

To learn more, they injected a radioactive tracer to track the hemolymph through the body and found that it was reacting to gravity. This indicates that gravity causes blood to flow downward in grasshoppers just like in humans.

And, interestingly, grasshoppers could substantially combat the effects of gravity on blood flow when awake but not when anesthetized. Thus, similar to vertebrates, grasshoppers have mechanisms to adjust to gravitational effects on their blood. So it's not just a pool of fluid sloshing around. But what are the mechanisms? Harrison and his colleagues are starting to figure that out.

First, just as in vertebrates, there seems to be some kind of functional valve within a grasshopper's body to prevent gravity-driven blood flow. Researchers at Virginia Tech showed that blood pressure is not related to gravity, supporting that new hypothesis. In addition, blood pressure in a grasshopper's head is unrelated to its blood pressure in the abdomen, also evidence of valving.

At ASU, undergraduate and postdoctoral researchers in Harrison's lab discovered that both heart and respiratory rates respond to body orientation and gravity. The grasshoppers that had their heads down (similar to a human standing on his or her head) had decreased heart rates to reduce fluid pooling in the brain. However, their ventilation rate increased. Harrison said they think this is because air sacs are being compressed around the brain so it's struggling to get enough oxygen.

"So, grasshoppers have at least three ways to compensate for gravity; variation in heart rate, breathing rate and functional valving. And I'm sure there's other stuff we don't know about," said Harrison.

As for other aspects of their physiology, insect bodies are capable of sophisticated responses to their active lifestyles.

"If you watch grasshoppers, they're all over the place. They're head up, head down, sideways," Harrison said. "They're very flexible in their body orientation, as are most insects. And now we know that when they change their orientation they have to respond to gravity just like humans, and they even show many of the same physiological responses. This is a dramatic example showing how similar animals are physiologically, despite how different they may appear."

Research paper


Related Links
Arizona State University
The Physics of Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


PHYSICS NEWS
Gravitational wave network catches another neutron star collision
Washington DC (SPX) Jan 07, 2020
On April 25, 2019, the LIGO Livingston Observatory picked up what appeared to be gravitational ripples from a collision of two neutron stars. LIGO Livingston is part of a gravitational-wave network that includes LIGO (the Laser Interferometer Gravitational-wave Observatory), funded by the National Science Foundation (NSF), and the European Virgo detector. Now, a new study confirms that this event was indeed likely the result of a merger of two neutron stars. This would be only the second time this ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
In Seychelles, nature is prized above mass tourism

London heads European investment in tech sector: study

Crew ready for spacewalk while working Earth and Fire Research

Boeing: Starliner capsule can return to flight with minimal work

PHYSICS NEWS
NASA rings in busy new year in Florida to prepare for Artemis Missions

SpaceX, NASA gear up for in-flight abort demonstration

Elon Musk praises results after SpaceX intentionally blows up Starship tank

Collaboration on development of next-generation rapid launch space systems

PHYSICS NEWS
NASA's Mars 2020 Rover closer to getting its name

Impressive cloud formations over Mars' northern polar ice cap

Rippling ice and storms at Mars' north pole

Mars loses water to space during warm, stormy seasons

PHYSICS NEWS
China may have over 40 space launches in 2020

China launches powerful rocket in boost for 2020 Mars mission

China's Xichang set for 20 space launches in 2020

China sends six satellites into orbit with single rocket

PHYSICS NEWS
Maxar Technologies to sell MDA to Northern Private Capital for CAD$1 Billion

Search is on for young space entrepreneurs across the UK

Iridium is Now Formally Authorized to Provide GMDSS Service

Euroconsult forecasts satellite demand to experience a four-fold increase over the next 10 years

PHYSICS NEWS
Nestle to invest 2bn Swiss francs in recycled plastics

Four nations to be protected with Lockheed Martin's next generation radar

Slow light to speed up LiDAR sensors development

Skin-like sensors bring a human touch to wearable tech

PHYSICS NEWS
Cold Neptune" and 2 temperate Super-Earths found orbiting nearby stars

Cosmic origins of phosphorus, a building block for life, traced by scientists

Telescope upgrade, move will aid in search for exoplanets

Goldilocks stars are best places to look for life

PHYSICS NEWS
Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.