Space News from SpaceDaily.com
CARBON WORLDS

Rice researchers unveil 'surprising' breakthrough in carbon nanotube recycling

by Alexandra Becker for Rice News
TECHNOLOGY NEWS
Commercial UAV Expo | Sept 2-4, 2025 | Las Vegas

Houston TX (SPX) Jan 14, 2025
In a significant step toward creating a sustainable and circular economy, Rice University researchers have published a landmark study in the journal Carbon demonstrating that carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. This discovery positions CNT fibers as a sustainable alternative to traditional materials like metals, polymers and the much larger carbon fibers, which are notoriously difficult to recycle.

"Recycling has long been a challenge in the materials industry - metals recycling is often inefficient and energy intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces," said corresponding author Matteo Pasquali, director of Rice's Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry. "As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future so as to proactively avoid waste management problems that emerged as other engineered materials reached large-scale use. We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that carbon nanotube fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue."

The research team used solution-spun CNT fibers created by dissolving fiber-grade commercial CNTs in chlorosulfonic acid, a widely used industrial solvent. Because end-of-life recycling invariably brings together materials that were manufactured by different companies in different processes, it was important to assess the effect of multiple material sources on the fiber manufacturing process and fiber properties. Fibers made from different types of CNTs produced by different manufacturers were initially processed into separate single-source virgin fibers, then recycled by combining them and mixing in chlorosulfonic acid. Surprisingly, mixing the two fibers led to complete redissolution and no sign of separation of the two source materials into different liquid phases. This redissolved material was spun into a mixed-source recycled fiber that retained the same structure and alignment of the virgin fiber.

"By using two different sources of carbon nanotubes, we ensured that our recycling process was representative of real-life conditions," said co-first author Michelle Duran-Chaves, a graduate student in chemistry. "Remarkably, the recycled fibers demonstrated equivalent mechanical strength, electrical conductivity, thermal conductivity and alignment, which is unprecedented in the field of engineered materials."

The research revealed several significant findings that position CNT fibers as a promising material in the journey toward sustainable practices. Foremost among these is the full recyclability of CNT fibers. Unlike traditional materials, particularly polymers and carbon fibers that degrade in quality during recycling, CNT fibers retained 100% of their original properties after being recycled.

"This preservation of quality means CNT fibers can be used and reused in demanding applications without compromising performance, thus extending their lifecycle and reducing the need for new raw materials," said co-first author Ivan R. Siqueira, a recent doctoral graduate in Rice's Department of Chemical and Biomolecular Engineering who is now associate professor of mechanical engineering at the Pontificia Universidade Catolica in Rio de Janeiro.

Equally significant is the efficiency of the recycling process. The researchers demonstrated that CNT fiber recycling is notably more efficient than traditional recycling methods for metals and polymers, which often involve high energy use, hazardous chemicals or labor-intensive sorting. CNT fibers, however, can be recycled without sorting as fibers from various sources can be combined to produce high-quality recycled materials. Once these materials reach scale, this simple recycling process will significantly reduce waste, energy consumption and carbon dioxide emissions associated with materials manufacturing.

"The ability to fully recycle CNT fibers has broad implications for industries like aerospace, automotive and electronics," Duran-Chaves said. "We hope this could pave the way for fully recyclable composites in aircraft, vehicles, civil infrastructures and more, ultimately reducing environmental impacts across a wide range of sectors."

Other co-authors of the paper include Rice graduate alumni Oliver Dewey, now of DexMat; Steven Williams; Cedric Ginestra, now of LyondellBasell; Yingru Song, now a postdoctoral fellow at Purdue University; Rice undergraduate alumnus Juan De La Garza, now of Axiom Space; and Geoff Wehmeyer, assistant professor of mechanical engineering.

This research is part of the broader program of the Carbon Hub, a Rice-led initiative developing a zero emissions future, where advanced carbon materials and clean hydrogen are co-produced efficiently and sustainably from hydrocarbons.

The work was supported by the Department of Energy's Advanced Research Project Agency, the Air Force Office of Scientific Research, the Robert A. Welch Foundation, the National Science Foundation, the Novo Nordisk Foundation CO2 Research Center, the Ken Kennedy Institute Graduate Fellowship from Schlumberger and Rice and a Riki Kobayashi Fellowship from Rice's chemical and biomolecular engineering department.

Research Report:Fully recyclable carbon nanotube fibers

Related Links
Carbon Hub
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet



CARBON WORLDS
Storing carbon in construction materials could address climate challenges
Los Angeles CA (SPX) Jan 10, 2025
Materials like concrete and plastic used in construction could sequester billions of tons of carbon dioxide, according to a study conducted by researchers from the University of California, Davis, and Stanford University. Published in the journal Science on Jan. 10, the research suggests that incorporating carbon storage into building materials could play a significant role in reducing global greenhouse gas emissions, particularly when paired with efforts to decarbonize the economy. "The potential
CARBON WORLDS
India becomes 4th nation to complete unmanned docking in space

India achieves 'historic' space docking mission

Stranded astronaut Suni Williams performs spacewalk at ISS

Health checks and suit installs before Thursday ISS spacewalk for science upkeep

CARBON WORLDS
Musk, Wikipedia founder in row over how to describe 'Nazi salute'

SpaceX again scrubs launch of more satellites from California

SpaceX catches Starship booster again, but upper stage explodes

FAA grounds SpaceX Starship launches after breakup

CARBON WORLDS
Trump vows to plant flag on Mars, omits mention of Moon return

Samples from Mars to reveal planet's evolutionary secrets

NASA to evaluate dual strategies for bringing Mars samples back to Earth

NASA eyes SpaceX, Blue Origin to cut Mars rock retrieval costs

CARBON WORLDS
H3 Shenzhou-19 astronauts advance experiments aboard Tiangong space station

Scientists plan to create the first fluttering flag on the moon

Tech innovation propels China's commercial space industry growth

China's human spaceflight program achieves key milestones in 2024

CARBON WORLDS
The Space Economy to Reach $944 Billion by 2033

ispace-EUROPE secures historic authorization for Lunar resource mission

Optimal Satcom surpasses 100 enterprise customers

Elsayed Talaat Appointed President and CEO of USRA

CARBON WORLDS
Flexible electronics integrated with paper-thin structure for use in space

Musk bashes Trump-backed AI mega project

Turn on the lights DAVD display helps navy divers navigate undersea conditions

Musk bashes Trump-backed AI mega project

CARBON WORLDS
Dormancy as a survival strategy for life's origins

SETI Forward celebrates the future of cosmic exploration

An autonomous strategy for life detection on icy worlds using Exo-AUV

Living in the deep, dark, slow lane: Insights from the first global appraisal of microbiomes in Earth's subsurface environments

CARBON WORLDS
SwRI models suggest Pluto and Charon formed similarly to Earth and Moon

Citizen scientists help decipher Jupiter's cloud composition

Capture theory unveils how Pluto and Charon formed as a binary system

Texas A and M researchers illuminate the mysteries of icy ocean worlds



Buy Advertising Editorial Enquiries

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. AFP, UPI and IANS newswire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement