Space News from SpaceDaily.com
ROBO SPACE

Eldercare robot helps people sit and stand, and catches them if they fall

by Jennifer Chu | MIT News
TECHNOLOGY NEWS
Commercial UAV Expo | Sept 2-4, 2025 | Las Vegas

Boston MA (SPX) May 14, 2025
The United States population is older than it has ever been. Today, the country's median age is 38.9, which is nearly a decade older than it was in 1980. And the number of adults older than 65 is expected to balloon from 58 million to 82 million by 2050. The challenge of caring for the elderly, amid shortages in care workers, rising health care costs, and evolving family structures, is an increasingly urgent societal issue.

To help address the eldercare challenge, a team of MIT engineers is looking to robotics. They have built and tested the Elderly Bodily Assistance Robot, or E-BAR, a mobile robot designed to physically support the elderly and prevent them from falling as they move around their homes.

E-BAR acts as a set of robotic handlebars that follows a person from behind. A user can walk independently or lean on the robot's arms for support. The robot can support the person's full weight, lifting them from sitting to standing and vice versa along a natural trajectory. And the arms of the robot can them by rapidly inflating side airbags if they begin to fall.

With their design, the researchers hope to prevent falls, which today are the leading cause of injury in adults who are 65 and older.

"Many older adults underestimate the risk of fall and refuse to use physical aids, which are cumbersome, while others overestimate the risk and may not to exercise, leading to declining mobility," says Harry Asada, the Ford Professor of Engineering at MIT. "Our design concept is to provide older adults having balance impairment with robotic handlebars for stabilizing their body. The handlebars go anywhere and provide support anytime, whenever they need."

In its current version, the robot is operated via remote control. In future iterations, the team plans to automate much of the bot's functionality, enabling it to autonomously follow and physically assist a user. The researchers are also working on streamlining the device to make it slimmer and more maneuverable in small spaces.

"I think eldercare is the next great challenge," says E-BAR designer Roberto Bolli, a graduate student in the MIT Department of Mechanical Engineering. "All the demographic trends point to a shortage of caregivers, a surplus of elderly persons, and a strong desire for elderly persons to age in place. We see it as an unexplored frontier in America, but also an intrinsically interesting challenge for robotics."

Bolli and Asada will present a paper detailing the design of E-BAR at the IEEE Conference on Robotics and Automation (ICRA) later this month.

Home support

Asada's group at MIT develops a variety of technologies and robotic aides to assist the elderly. In recent years, others have developed fall prediction algorithms, designed robots and automated devices including robotic walkers, wearable, self-inflating airbags, and robotic frames that secure a person with a harness and move with them as they walk.

In designing E-BAR, Asada and Bolli aimed for a robot that essentially does three tasks: providing physical support, preventing falls, and safely and unobtrusively moving with a person. What's more, they looked to do away with any harness, to give a user more independence and mobility.

"Elderly people overwhelmingly do not like to wear harnesses or assistive devices," Bolli says. "The idea behind the E-BAR structure is, it provides body weight support, active assistance with gait, and fall catching while also being completely unobstructed in the front. You can just get out anytime."

The team looked to design a robot specifically for aging in place at home or helping in care facilities. Based on their interviews with older adults and their caregivers, they came up with several design requirements, including that the robot must fit through home doors, allow the user to take a full stride, and support their full weight to help with balance, posture, and transitions from sitting to standing.

The robot consists of a heavy, 220-pound base whose dimensions and structure were optimized to support the weight of an average human without tipping or slipping. Underneath the base is a set of omnidirectional wheels that allows the robot to move in any direction without pivoting, if needed. (Imagine a car's wheels shifting to slide into a space between two other cars, without parallel parking.)

Extending out from the robot's base is an articulated body made from 18 interconnected bars, or linkages, that can reconfigure like a foldable crane to lift a person from a sitting to standing position, and vice versa. Two arms with handlebars stretch out from the robot in a U-shape, which a person can stand between and lean against if they need additional support. Finally, each arm of the robot is embedded with airbags made from a soft yet grippable material that can inflate instantly to catch a person if they fall, without causing bruising on impact. The researchers believe that E-BAR is the first robot able to catch a falling person without wearable devices or use of a harness.

They tested the robot in the lab with an older adult who volunteered to use the robot in various household scenarios. The team found that E-BAR could actively support the person as they bent down to pick something up from the ground and stretched up to reach an object off a shelf - tasks that can be challenging to do while maintaining balance. The robot also was able to lift the person up and over the lip of a tub, simulating the task of getting out of a bathtub.

Bolli envisions a design like E-BAR would be ideal for use in the home by elderly people who still have a moderate degree of muscle strength but require assistive devices for activities of daily living.

"Seeing the technology used in real-life scenarios is really exciting," says Bolli.

In their current paper, the researchers did not incorporate any fall-prediction capabilities in E-BAR's airbag system. But another project in Asada's lab, led by graduate student Emily Kamienski, has focused on developing algorithms with machine learning to control a new robot in response to the user's real-time fall risk level.

Alongside E-BAR, Asada sees different technologies in his lab as providing different levels of assistance for people at certain phases of life or mobility.

"Eldercare conditions can change every few weeks or months," Asada says. "We'd like to provide continuous and seamless support as a person's disability or mobility changes with age."

This work was supported, in part, by the National Robotics Initiative and the National Science Foundation.

Research Report:Elderly Bodily Assistance Robot (E-BAR): A Robot System for Body-Weight Support, Ambulation Assistance, and Fall Catching, Without the Use of a Harness

Related Links
Department of Mechanical Engineering
All about the robots on Earth and beyond!



ROBO SPACE
Ping pong bot returns shots with high-speed precision
Boston MA (SPX) May 12, 2025
MIT engineers are getting in on the robotic ping pong game with a powerful, lightweight design that returns shots with high-speed precision. The new table tennis bot comprises a multijointed robotic arm that is fixed to one end of a ping pong table and wields a standard ping pong paddle. Aided by several high-speed cameras and a high-bandwidth predictive control system, the robot quickly estimates the speed and trajectory of an incoming ball and executes one of several swing types - loop, drive, o
ROBO SPACE
NASA's Voyager 1 Revives Backup Thrusters Before Command Pause

3D Printing Technologies Pave the Way for Moon and Mars Construction

Seeking something new, Airbnb CEO promises 'perfect concierge'

Axiom advances space health tech and cancer studies with Ax 4 mission

ROBO SPACE
China completes testing of powerful reusable liquid rocket engine

SpaceX sends up more Starlink satellites

SpaceX launches another batch of Starlink satellites into low-Earth orbit

EU faces heat over millions paid to Musk firms

ROBO SPACE
What Martian Craters Reveal About Subsurface Composition

Europa Clipper Conducts Critical Mars Flyby for Instrument Calibration

Martian Atmosphere Enables Advanced In-Situ Thermoelectric Power Generation

Martian Seismic Data Suggests Potential Liquid Water Reserves at Depth

ROBO SPACE
China Establishes UN-SPIDER Regional Support Office at Wuhan University

Tiangong returns largest sample set yet for biological and materials science research

Space is a place to found a community not a colony

China's Shenzhou-19 astronauts return to Earth

ROBO SPACE
Intelsat and Cubic3 Advance Vehicle Connectivity with Successful Satellite Integration Test

European Space Agency and Indian Space Research Organisation Expand Human Spaceflight Collaboration

Rheinmetall and ICEYE to Form Joint Venture for Satellite Production and Space Solutions

Elon Musk new interest after space satellites: Stake

ROBO SPACE
'Fortnite' unavailable on Apple devices worldwide

Glasgow Lab to Test Space-Bound 3D-Printed Materials for Safety

Atomic-Level Precision and Strong Oxidation Unite in GOALL-Epitaxy for Advanced Material Growth

Accelerating Mathematical Discovery with AI for Tomorrow's Breakthroughs

ROBO SPACE
Tracing ancient cyanobacteria reveals early origins of circadian clocks

Twin Star Systems May Hold Key to Planet Formation Insights

NASA Cleanroom Microbes Reveal Survival Strategies for Space and Biotech

Plato nears final camera installation for exoplanet hunt

ROBO SPACE
Juno reveals subsurface secrets of Jupiter and Io

Planetary Alignment Provides NASA Rare Opportunity to Study Uranus

On Jupiter, it's mushballs all the way down

20 years of Hubble data reveals evolving weather patterns on Uranus



Buy Advertising Editorial Enquiries

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. AFP, UPI and IANS newswire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement