Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
X-ray pulses uncover free nanoparticles for the first time in 3-D
by Staff Writers
Hamburg, Germany (SPX) Feb 11, 2015


This is a wide-angle X-ray diffraction image of a truncated twinned tetrahedra nanoparticle. Image courtesy Hannes Hartmann/University of Rostock.

For the first time, a German-American research team has determined the three-dimensional shape of free-flying silver nanoparticles, using DESY's X-ray laser FLASH.

The tiny particles, hundreds of times smaller than the width of a human hair, were found to exhibit an unexpected variety of shapes, as the physicists from the Technical University (TU) Berlin, the University of Rostock, the SLAC National Accelerator Laboratory in the United States and from DESY report in the scientific journal Nature Communications. Besides this surprise, the results open up new scientific routes, such as direct observation of rapid changes in nanoparticles.

Nanoparticles are becoming increasingly pervasive in our everyday lives. These tiny particles, invisible to the naked eye, have widespread applications, ranging from sunscreen and paints to colour filters and electronic components.

They are even promising for medical purposes including cancer treatment. "The functionality of nanoparticles is linked to their geometric form, which is often very difficult to determine experimentally," explains Dr. Ingo Barke from the University of Rostock. "This is particularly challenging when they are present as free particles, that is, in the absence of contact with a surface or a liquid."

The nanoparticle shape can be revealed from the characteristic way how it scatters X-ray light. Therefore, X-ray sources like DESY's FLASH enable a sort of super microscope into the nano-world.

So far, the spatial structure of nanoparticles has been reconstructed from multiple two-dimensional images, which were taken from different angles. This procedure is uncritical for particles on solid substrates, as the images can be taken from many different angles to uniquely reconstruct their three-dimensional shape.

"Bringing nanoparticles into contact with a surface or a liquid can significantly alter the particles, such that you can no longer see their actual form," says Dr. Daniela Rupp from the TU Berlin. A free particle, however, can only be measured one time in flight before it either escapes or is destroyed by the intense X-ray light. Therefore, the scientists looked for a way to record the entire structural information of a nanoparticle with a single X-ray laser pulse.

To achieve this goal, the scientists led by Prof. Thomas Moller from the TU Berlin and Prof. Karl-Heinz Meiwes-Broer and Prof. Thomas Fennel from the University of Rostock employed a trick. Instead of taking usual small-angle scattering images, the physicists recorded the scattered X-rays in a wide angular range. "This approach virtually captures the structure from many different angles simultaneously from a single laser shot," explains Fennel.

The researchers tested this method on free silver nanoparticles with diameters of 50 to 250 nanometres (0.00005 to 0.00025 millimetres). The experiment did not only verify the feasibility of the tricky method, but also uncovered the surprising result that large nanoparticles exhibit a much greater variety of shapes than expected.

The shape of free nanoparticles is a result of different physical principles, particularly the particles' effort to minimize their energy. Consequently, large particles composed of thousands or millions of atoms often yield predictable shapes, because the atoms can only be arranged in a particular way to obtain an energetically favourable state.

In their experiment, however, the researchers observed numerous highly symmetrical three-dimensional shapes, including several types known as Platonic and Archimedean bodies. Examples include the truncated octahedron (a body consisting of eight regular hexagons and six squares) and the icosahedron (a body made up of twenty equilateral triangles).

The latter is actually only favourable for extremely small particles consisting of few atoms, and its occurrence with free particles of this size was previously unknown. "The results show that metallic nanoparticles retain a type of memory of their structure, from the early stages of growth to a yet unexplored size range," emphasizes Barke.

Due to the large variety of shapes, it was especially important to use a fast computational method so that the researchers were capable of mapping the shape of each individual particle.

The scientists used a two-step process: the rough shape was determined first and then refined using more complex simulations on a super computer. This approach turned out to be so efficient that it could not only determine various shapes reliably, but could also differentiate between varying orientations of the same shape.

This new method for determining the three-dimensional shape and orientation of nanoparticles with a single X-ray laser shot opens up a wide spectrum of new research directions. In future projects, particles could be directly "filmed" in three dimensions during growth or during phase changes.

"The ability to directly film the reaction of a nanoparticle to an intense flash of X-ray light has been a dream for many physicists - this dream could now come true, even in 3D!," emphasises Rupp.

.


Related Links
Deutsches Elektronen-Synchrotron DESY
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Engineers uses disorder to control light on a nanoscale
Los Angeles CA (SPX) Feb 03, 2015
A breakthrough by a team of researchers from UCLA, Columbia University and other institutions could lead to the more precise transfer of information in computer chips, as well as new types of optical materials for light emission and lasers. The researchers were able to control light at tiny lengths around 500 nanometers - smaller than the light's own wavelength - by using random crystal ... read more


NANO TECH
NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

Service Module of Chinese Probe Enters Lunar Orbit

NANO TECH
Mars Rover Nearing Marathon Achievement

NASA's Curiosity Analyzing Sample of Martian Mountain

NASA's Curiosity Analyzing Sample of Martian Mountain

NASA Spacecraft Completes 40,000 Mars Orbits

NANO TECH
Critical NASA Science Returns to Earth aboard SpaceX Dragon Spacecraft

Generation Z: Born in the digital age

Moon momentos found languishing in Armstrong's closet

45th Space Wing, SpaceX sign first-ever landing pad agreement at the Cape

NANO TECH
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

NANO TECH
NASA, Space Station Partners Announce Future Mission Crew Members

Camera to record doomed ATV's disintegration - from inside

ATV to bid farewell to Space Station for last time

The Strange Way Fluids Slosh on the International Space Station

NANO TECH
SpaceX launches deep-space weather observatory

SpaceX cargo craft returns to Earth

High seas force SpaceX to ditch bid to recycle rocket

Soyuz Installed at Baikonur, Expected to Launch Wednesday

NANO TECH
Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

Dawn ahead!

Habitable Evaporated Cores

NANO TECH
India overtakes China to become top global gold consumer

Measurement of key molecule increases accuracy of combustion models

SSC expands at the Inuvik Satellite Station Facility

New method allows for greater variation in band gap tunability




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.