Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
X-ray Discovery Points To Location Of Missing Matter
by Staff Writers
Boston MA (SPX) May 12, 2010


This missing matter - which is different from dark matter - is composed of baryons, the particles, such as protons and electrons, that are found on the Earth, in stars, gas, galaxies, and so on.

Using observations with NASA's Chandra X-ray Observatory and ESA's XMM-Newton, astronomers have announced a robust detection of a vast reservoir of intergalactic gas about 400 million light years from Earth. This discovery is the strongest evidence yet that the "missing matter" in the nearby Universe is located in an enormous web of hot, diffuse gas.

This missing matter - which is different from dark matter - is composed of baryons, the particles, such as protons and electrons, that are found on the Earth, in stars, gas, galaxies, and so on. A variety of measurements of distant gas clouds and galaxies have provided a good estimate of the amount of this "normal matter" present when the universe was only a few billion years old.

However, an inventory of the much older, nearby universe has turned up only about half as much normal matter, an embarrassingly large shortfall.

The mystery then is where does this missing matter reside in the nearby universe? This latest work supports predictions that it is mostly found in a web of hot, diffuse gas known as the Warm-Hot Intergalactic Medium (WHIM). Scientists think the WHIM is material left over after the formation of galaxies, which was later enriched by elements blown out of galaxies.

"Evidence for the WHIM is really difficult to find because this stuff is so diffuse and easy to see right through," said Taotao Fang of the University of California at Irvine and lead author of the latest study. "This differs from many areas of astronomy where we struggle to see through obscuring material."

To look for the WHIM, the researchers examined X-ray observations of a rapidly growing supermassive black hole known as an active galactic nucleus, or AGN. This AGN, which is about two billion light years away, generates immense amounts of X-ray light as it pulls matter inwards.

Lying along the line of sight to this AGN, at a distance of about 400 million light years, is the so-called Sculptor Wall. This "wall", which is a large diffuse structure stretching across tens of millions of light years, contains thousands of galaxies and potentially a significant reservoir of the WHIM if the theoretical simulations are correct. The WHIM in the wall should absorb some of the X-rays from the AGN as they make their journey across intergalactic space to Earth.

Using new data from Chandra and previous observations with both Chandra and XMM-Newton, absorption of X-rays by oxygen atoms in the WHIM has clearly been detected by Fang and his colleagues. The characteristics of the absorption are consistent with the distance of the Sculptor Wall as well as the predicted temperature and density of the WHIM.

This result gives scientists confidence that the WHIM will also be found in other large-scale structures.

Several previous claimed detections of the hot component of the WHIM have been controversial because the detections had been made with only one X-ray telescope and the statistical significance of many of the results had been questioned.

"Having good detections of the WHIM with two different telescopes is really a big deal," said co-author David Buote, also from the University of California at Irvine. "This gives us a lot of confidence that we have truly found this missing matter."

In addition to having corroborating data from both Chandra and XMM- Newton, the new study also removes another uncertainty from previous claims. Because the distance of the Sculptor Wall is already known, the statistical significance of the absorption detection is greatly enhanced over previous "blind" searches.

These earlier searches attempted to find the WHIM by observing bright AGN at random directions on the sky, in the hope that their line of sight intersects a previously undiscovered large-scale structure.

Confirmed detections of the WHIM have been made difficult because of its extremely low density. Using observations and simulations, scientists calculate the WHIM has a density equivalent to only 6 protons per cubic meter. For comparison, the interstellar medium - the very diffuse gas in between stars in our galaxy - typically has about a million hydrogen atoms per cubic meter.

"Evidence for the WHIM has even been much harder to find than evidence for dark matter, which is invisible but can be detected because of its gravitational effects on stars and galaxies," said Fang.

There have been important detections of possible WHIM in the nearby Universe with relatively low temperatures of about 100,000 degrees using ultraviolet observations and relatively high temperature WHIM of about 10 million degrees using observations of X-ray emission in galaxy clusters.

However, these are expected to account for only a relatively small fraction of the WHIM. The X-ray absorption studies reported here probe temperatures of about a million degrees where most of the WHIM is predicted to be found.

These results appear in the May 10th issue of The Astrophysical Journal. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

.


Related Links
Chandra X-ray Center
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Hubble Catches Heavyweight Star Speeding Out Of 30 Doradus
Washington DC (SPX) May 12, 2010
A heavy runaway star is rushing away from a nearby stellar nursery at more than 250,000 miles an hour, a speed that will get you to the Moon and back in two hours. The runaway is the most extreme case of a very massive star that has been kicked out of its home by a group of even heftier siblings. The homeless star is on the outskirts of the 30 Doradus nebula, a raucous stellar breeding gro ... read more


STELLAR CHEMISTRY
LRO Team Helps Track Laser Signals To Russian Rover Mirror

Lunar Polar Craters May Be Electrified

Seed Bank For The Moon

Craters Around Lunar Poles Could Be Electrified

STELLAR CHEMISTRY
Mars500 European Crew Selected And Ready To Go

Opportunity Drives Twice This Week

New Martian Views From Orbiting Camera Show Diversity

Countdown begins to 520 day 'Mars mission'

STELLAR CHEMISTRY
Astronaut Takes Flag To Outer Space To Commemorate The Ilan Ramon Scholarship Project

'Starving yogi' astounds Indian scientists

NASA Tests Orion Launch Abort System

NASA Studies Find Omega-3 May Help Reduce Bone Loss

STELLAR CHEMISTRY
China Signs Up First Female Astronauts

China To Launch Second Lunar Probe This Year

China, Bolivia to build communications satellite

China To Complete Wenchang Space Center By 2015

STELLAR CHEMISTRY
Russian Space Freighter Undocked From ISS

Researchers To Send Bacteria Into Orbit Aboard Atlantis

Russian Space Freighter Ready To Leave Orbital Station

NASA And DARPA Seek Satellite Research Proposals For ISS

STELLAR CHEMISTRY
Soyuz Consultation Committee Sets Inaugural Launch For Fourth Quarter Of 2010

Integration Of Soyuz' First And Second Stages Is Complete

Arianespace Signs Contract With HUGHES To Launch Jupiter

Energia Overseas Limited Assumes DIP Financing For Sea Launch

STELLAR CHEMISTRY
Planet discovered lacking methane

'This Planet Tastes Funny,' According To Spitzer

Small, Ground-Based Telescope Images Three Exoplanets

Wet Rocky Planets A Dime A Dozen In The Milky Way

STELLAR CHEMISTRY
Google, Verizon working on tablet computer: WSJ

Beware phony 3-D as Hollywood cashes in

Designed Biomaterials Mimicking Biology

New Metamaterial Device May Lead To See-Through Cameras And Scanners




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement