. 24/7 Space News .
XMM-Newton Detects Pulsed Heartbeat Of A Weird New Type Of Star

An artist's impression of a Rotating Radio Transient. Credits: Russel Kightly Media
by Staff Writers
Paris, France (SPX) Dec 24, 2007
XMM-Newton has detected periodic X-ray emission, or the pulsed heartbeat of a weird new type of star. Collecting the X-rays from the so-called rotating radio transient has confirmed the nature of the underlying celestial object and given astronomers a new insight into these exotic objects. The observations were made using XMM-Newton's European Photon Imaging Camera (EPIC), which targeted the celestial object RRAT J1819-1458. Astronomers observed the object for around 12 hours and detected pulsations in the X-ray data that show the source to be rotating once every 4.26 seconds.

Previously, astronomers had only seen radio outbursts from this object. It erupts every three minutes or so with a brief burst of radio emission lasting just 3 milliseconds. Such behaviour defines the object as a rotating radio transient (RRAT).

The RRATs were announced in February 2006. Eleven objects were found using the Parkes radio telescope. Astronomers suspected that RRATs were neutron stars, the compact remnants of dead stars made of neutrons and measuring just 10-12 km across yet containing more matter than the Sun. They are therefore extremely dense. Most observed neutron stars are radio pulsars; rotating quickly and sweeping lighthouse beams of radiation across space that make them appear to pulsate. The RRATs, however, were only detected through their radio bursts.

The new XMM-Newton observations show that periodic emission, linked to the object's rotation, can be detected in X-rays. "It is now definite that RRATs are rotating neutron stars as we can see the 4.26-second rotation period of the RRAT in the X-ray data," says Maura McLaughlin, West Virginia University, USA, who took the lead in the research.

In addition to the identification of the underlying celestial object from the discovery of the X-ray pulsations, XMM-Newton also revealed another facet of the RRAT's behaviour. Something appears to be absorbing certain frequencies of the X-rays after they are emitted from the surface of the neutron star.

The absorption could either be happening in an atmosphere of gases surrounding the neutron star or by particles trapped in the neutron star's magnetic field. If the second reason is the cause of the absorption, it would indicate that the magnetic field of this RRAT is strong. "We can't say for sure where the absorption is coming from with these observations," says Nanda Rea, University of Amsterdam, Netherlands. She estimates that an observation twice as long would collect enough data to determine where the absorption is taking place.

She also hopes to follow-up this observation by targeting other RRATs. Before that can happen, however, the team must refine the positions they have for these objects. To do this, they continue to observe the RRATs with radio telescopes across the world, timing the outbursts. From careful measurements of the arrival times of the bursts over the course of the year, their positions in the sky can be determined more accurately. Once these locations are known, X-ray telescopes can be pointed in their direction.

Since the original discovery of 11 RRATs, McLaughlin's team has found an additional 10. This indicates that they may form a substantial population in the Milky Way, with over 100 000 of them dotted around our galaxy.

Discovery of pulsations and a possible spectral feature in the X-Ray emission from rotating radio transient J1819-1458 by M. McLaughlin, N. Rea, B. Gaensler, S. Chatterjee, F. Camilo, M. Kramer, D. Lorimer, A. Lyne, G. Israel, and A. Possenti is published in The Astrophysical Journal.

Community
Email This Article
Comment On This Article

Related Links
XMM-Newton at ESA
Integral at ESA
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Suzaku Explains Cosmic Powerhouses
Tokyo, Japan (SPX) Dec 21, 2007
By working in synergy with a ground-based telescope array, the joint Japanese Aerospace Exploration Agency (JAXA)/NASA Suzaku X-ray observatory is shedding new light on some of the most energetic objects in our galaxy, but objects that remain shrouded in mystery. These cosmic powerhouses pour out vast amounts of energy, and they accelerate particles to almost the speed of light.







  • SPACEHAB Announces Successful ARCTUS Mid-Air Recovery Test
  • Russia To Launch Space Base For Missions To Moon And Mars After 2020
  • Final Preparations For First Human-Rated Spacecraft To Be Launched From Europe's Spaceport
  • Russia Soon To View Two Space Transport Projects

  • Astronomers Monitor Asteroid To Pass Near Mars
  • How Mars Could Have Been Warm And Wet But Limestone-Free
  • In Search For Water On Mars Via Clues From Antarctica
  • Global Map Reveals Mineral Distribution On Mars

  • Ariane 5 Wraps Up 2007 With Its Sixth Dual-Satellite Launch
  • Ariane 5 rockets puts Africa's first satellite into space
  • Sixth Ariane 5 Mission Of 2007 Set For December 20 Launch
  • HISPASAT Chooses Arianespace To Launch The Amazonas 2 Satellite

  • Lockheed Martin Awarded Contract For GOES-R Geostationary Lightning Mapper
  • Study Shows Urban Sprawl Continues To Gobble Up Land
  • ASU Researchers Use NASA Satellites To Improve Pollution Modeling
  • Outside View: Russia's new sats -- Part 2

  • The PI's Perspective: Autumn 2007: Onward to the Kuiper Belt
  • Data For The Next Generations
  • Goddard Instrument Makes Cover Of Science
  • Checking Out New Horizons

  • XMM-Newton Detects Pulsed Heartbeat Of A Weird New Type Of Star
  • 10,000 Earths Worth Of Fresh Dust Found Near Star Explosion
  • Suzaku Explains Cosmic Powerhouses
  • Earliest Stage Of Planet Formation Dated

  • India And Russia Begin Talks On Chandrayaan-II
  • Soyuz-FG Carrier Rocket Puts Canadian Satellite Into Orbit
  • KAGUYA (SELENE) Observations Using The Spectral Profiler
  • India installs antennas for planned moon mission: official

  • Modernized GPS Satellite Built By Lockheed Martin Launched From Cape Canaveral
  • Two Years In Space For Galileo Satellite
  • Lockheed Martin-Built GPS Satellite Poised For Liftoff From Cape Canaveral Launch Pad
  • Navteq Powers Innovative Lowrance Hybrid Portable Device

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement