. 24/7 Space News .
XMM-Newton And Suzaku Help Pioneer Method For Probing Exotic Matter

This image is an artist's concept of a thermonuclear burst consuming an entire neutron star. The neutron star (blue sphere) is part of a binary star system, and its neighbouring star (yellow-red sphere) supplies the fuel for the thermonuclear bursts. During solar outbursts or when the orbit brings the stars closer together, gas from the companion star flows toward the neutron star, attracted by its strong gravity. The flow of gas forms a swirling disk around the neutron star, called an accretion disk (multi-coloured swirl around the blue sphere).

Thermonuclear bursts arise as gas moving at close to the speed of light crashes onto the neutron star surface. The gas, pinned to the neutron star by gravity, spreads across the surface. As more and more gas rains down, pressure builds and temperature climbs until there is enough energy for nuclear fusion. This ignites a chain reaction that engulfs the entire neutron star within a second. Bursts last for one to two minutes and can occur several times per hour. Credits: NASA

by Staff Writers
Paris, France (ESA) Aug 28, 2007
Astronomers using XMM-Newton and Suzaku have seen Einstein's predicted distortion of space-time and pioneered a ground-breaking technique for determining the properties of neutron stars.

ESA's XMM-Newton and the JAXA/NASA Suzaku X-ray observatories have been used to see the distortion of space-time around three neutron stars. These objects contain the densest observable matter in the Universe. Neutron stars cram more than a Sun's worth of material into a city-sized sphere. This means that a cup of neutron-star stuff would outweigh Mount Everest. Astronomers use these collapsed stars as natural laboratories to study how tightly matter can be compacted under the most extreme pressure that nature can offer.

"This is fundamental physics," says Sudip Bhattacharyya at NASA's Goddard Space Flight Center, USA. "There could be exotic kinds of particles or states of matter, such as quark matter, in the centres of neutron stars, but it's impossible to create them in the lab. The only way to find out is to understand neutron stars."

To address this mystery, scientists must accurately and precisely measure the diameters and masses of neutron stars. In two concurrent studies, one with XMM-Newton and the other with Suzaku, astronomers have taken a big step forward.

Using XMM-Newton, Bhattacharyya and his colleague Tod Strohmayer observed a binary system known as Serpens X-1, which contains a neutron star and a stellar companion. They studied a spectral line from hot iron atoms that are whirling around in a disc, just beyond the neutron star's surface, at 40% the speed of light.

Previous X-ray observatories detected iron lines around neutron stars, but they lacked the sensitivity to measure the shapes of the lines in detail.

Burst consuming a neutron star
Thanks to XMM-Newton's large mirrors, Bhattacharyya and Strohmayer found that the iron line is broadened asymmetrically by the gas's extreme velocity, which smears and distorts the line because of the Doppler effect and beaming effects predicted by Einstein's special theory of relativity. The warping of space-time by the neutron star's powerful gravity, an effect of Einstein's general theory of relativity, shifts the neutron star's iron line to longer wavelengths.

"We have seen these asymmetric lines from many black holes, but this is the first confirmation that neutron stars can produce them as well. It shows that the way neutron stars accrete matter is not very different from that of black holes, and gives us a new tool to probe Einstein's theory," says Strohmayer.

A group led by Edward Cackett and Jon Miller of the University of Michigan, which includes Bhattacharyya and Strohmayer, used Suzaku's superb spectral capabilities to survey three neutron-star binaries: Serpens X-1, GX 349+2, and 4U 1820-30. This team observed a nearly identical iron line in Serpens X-1, confirming the XMM-Newton result. It detected similarly skewed iron lines in the other two systems as well.

"We're seeing the gas whipping around just outside the neutron star's surface," says Cackett. "And since the inner part of the disc obviously cannot orbit any closer than the neutron star's surface, these measurements give us a maximum size of the neutron star's diameter. The neutron stars can be no larger than 29 to 33 km across, results that agree with other types of measurements."

"Now that we have seen this relativistic iron line around three neutron stars, we have established a new technique," adds Miller. "It's very difficult to measure the mass and diameter of a neutron star, so we need several techniques to work together to achieve that goal."

Knowing a neutron star's size and mass allows physicists to describe the 'stiffness' (or equation of state) of matter packed inside these incredibly dense objects. Besides using these iron lines to test Einstein's general theory of relativity, astronomers can use them to probe conditions in the inner part of a neutron star's accretion disc.

Community
Email This Article
Comment On This Article

Related Links
Suzaku at ISAS
Suzaku at NASA
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Possible Closest Neutron Star To Earth Found
University Park PA (SPX) Aug 21, 2007
Using NASA's Swift satellite, McGill University and Penn State University astronomers have identified an object that is likely one of the closest neutron stars to Earth -- and possibly the closest. The object, located in the constellation Ursa Minor, is nicknamed Calvera, after the villain in the movie "The Magnificent Seven."







  • Gulf Coast Key To Future NASA Exploration Plans
  • Pioneering NASA Spacecraft Mark Thirty Years Of Flight
  • In Search Of Interstellar Dragon Fire
  • Endeavour Carries Millions Of Basil Seeds Up And Back

  • Mars Rovers Get About As Spirit Clips Viking 2 For Operational Ground Duty
  • Recon Orbiter Camera Issue Resolved As 3000th Image Comes Down From Mars
  • Brightening Skies Bolster Opportunity For MER-B To Survive 2007 Dust Season
  • Mars-500 Experiment Could Be Extended To 700 Days

  • E'Prime Aerospace Corporation Selects First Launch Operations Facility
  • Sea Launch Awaits Delivery Of New Gas Deflector
  • India To Launch INSAT-4CR From Sriharikota On Sept 01
  • Ariane 5 - Third Dual-Payload Launch Of 2007

  • European Hot Spots And Fires Identified From Space
  • China Develops Beidou Satellite Monitoring System
  • DigitalGlobe Announces Launch Date For WorldView-1
  • Radar reveals vast medieval Cambodian city: study

  • Outbound To The Outerplanets At 7 AU
  • Charon: An Ice Machine In The Ultimate Deep Freeze
  • New Horizons Slips Into Electronic Slumber
  • Nap Before You Sleep For Your Cruise Into The Abyss Of Outer Sol

  • XMM-Newton And Suzaku Help Pioneer Method For Probing Exotic Matter
  • Possible Closest Neutron Star To Earth Found
  • Dark Matter Mystery Deepens In Cosmic Train Wreck
  • Johnny Appleseed Of The Cosmos

  • An Exploding Lunar Eclipse
  • SpaceDev To Build Lunar Lander Prototype
  • Drawing A Living On Lunar
  • SMART-1 Diagnoses Wrinkles And Excess Weight On The Moon

  • Boeing Bids On Next Generation Global Positioning Satellite System
  • Lockheed Martin Bids On Next Generation Global Positioning Satellite System
  • Tracking The Elusive Shipping Container Out Beyond The Horizon
  • Russia Starts Serial Production Of New Navigation Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement