. 24/7 Space News .
SPACE MEDICINE
World's smallest tape recorder is built from microbes
by Staff Writers
New York NY (SPX) Dec 06, 2017


A video of a sample during measurement.

Through a few clever molecular hacks, researchers at Columbia University Medical Center have converted a natural bacterial immune system into a microscopic data recorder, laying the groundwork for a new class of technologies that use bacterial cells for everything from disease diagnosis to environmental monitoring.

The researchers modified an ordinary laboratory strain of the ubiquitous human gut microbe Escherichia coli, enabling the bacteria to not only record their interactions with the environment but also time-stamp the events.

"Such bacteria, swallowed by a patient, might be able to record the changes they experience through the whole digestive tract, yielding an unprecedented view of previously inaccessible phenomena," says Harris Wang, assistant professor in the Department of Pathology and Cell Biology and Systems Biology at CUMC and senior author on the new work, described in today's issue of Science.

Other applications could include environmental sensing and basic studies in ecology and microbiology, where bacteria could monitor otherwise invisible changes without disrupting their surroundings.

Wang and members of his laboratory created the microscopic data recorder by taking advantage of CRISPR-Cas, an immune system in many species of bacteria. CRISPR-Cas copies snippets of DNA from invading viruses so that subsequent generations of bacteria can repel these pathogens more effectively. As a result, the CRISPR locus of the bacterial genome accumulates a chronological record of the bacterial viruses that it and its ancestors have survived. When those same viruses try to infect again, the CRISPR-Cas system can recognize and eliminate them.

"The CRISPR-Cas system is a natural biological memory device," says Wang. "From an engineering perspective that's actually quite nice, because it's already a system that has been honed through evolution to be really great at storing information."

CRISPR-Cas normally uses its recorded sequences to detect and cut the DNA of incoming phages. The specificity of this DNA cutting activity has made CRISPR-Cas the darling of gene therapy researchers, who have modified it to make precise changes in the genomes of cultured cells, laboratory animals, and even humans. Indeed, over a dozen clinical trials are now underway to treat various diseases through CRISPR-Cas gene therapy.

But Ravi Sheth, a graduate student in Wang's laboratory, saw unrealized potential in CRISPR-Cas's recording function. "When you think about recording temporally changing signals with electronics, or an audio recording ... that's a very powerful technology, but we were thinking how can you scale this to living cells themselves?" says Sheth.

To build their microscopic recorder, Sheth and other members of the Wang lab modified a piece of DNA called a plasmid, giving it the ability to create more copies of itself in the bacterial cell in response to an external signal.

A separate recording plasmid, which drives the recorder and marks time, expresses components of the CRISPR-Cas system. In the absence of an external signal, only the recording plasmid is active, and the cell adds copies of a spacer sequence to the CRISPR locus in its genome. When an external signal is detected by the cell, the other plasmid is also activated, leading to insertion of its sequences instead.

The result is a mixture of background sequences that record time and signal sequences that change depending on the cell's environment. The researchers can then examine the bacterial CRISPR locus and use computational tools to read the recording and its timing.

The current paper proves the system can handle at least three simultaneous signals and record for days.

"Now we're planning to look at various markers that might be altered under changes in natural or disease states, in the gastrointestinal system or elsewhere," says Dr. Wang.

Synthetic biologists have previously used CRISPR to store poems, books, and images in DNA, but this is the first time CRISPR has been used to record cellular activity and the timing of those events.

SPACE MEDICINE
Biotemplates breakthrough paves way for cheaper nanobots
Washington DC (SPX) Dec 05, 2017
A feature of science fiction stories for decades, nanorobot potential ranges from cancer diagnosis and drug delivery to tissue repair and more. A major hurdle to these endeavors, however, is finding a way to cheaply make a propulsion system for these devices. New developments may now propel nanoswimmers from science fiction to reality thanks to unexpected help from bacteria. An internation ... read more

Related Links
Columbia University Medical Center
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Does the Outer Space Treaty at 50 need a rethink

NASA to send critical science, instruments to Space Station

New motion sensors major step towards cheaper wearable technology

Can a magnetic sail slow down an interstellar probe

SPACE MEDICINE
Russia to build launch pad for super heavy-lift carrier by 2028

Flat-Earther's self-launch plan hits a snag

Mechanisms are critical to all space vehicles

SSTL ships CARBONITE-2 and Telesat's LEO-1 for PSLV launch

SPACE MEDICINE
Opportunity Greets Winter Solstice

NASA builds its next Mars rover mission

Earthworms can reproduce in Mars-like soil

Gadgets for Mars

SPACE MEDICINE
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

SPACE MEDICINE
Orbital ATK purchase by Northrop Grumman approved by shareholders

UK space launch program receives funding boost from Westminster

Going green to the Red Planet

Need to double number of operational satellites: ISRO chief

SPACE MEDICINE
Borophene shines alone as 2-D plasmonic material

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

Study shows how to get sprayed metal coatings to stick

PPPL scientists deliver new high-resolution diagnostic to national laser facility

SPACE MEDICINE
Scallops have 200 eyes, which function like a telescope: study

Texas A and M-Galveston team finds cave organisms living off methane gas

Exoplanet Has Smothering Stratosphere Without Water

Mexico's Yucatan Peninsula reveals a cryptic methane-fueled ecosystem in flooded caves

SPACE MEDICINE
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.