. 24/7 Space News .
CARBON WORLDS
World's most efficient production of succinate from carbon dioxide
by Staff Writers
Kobe, Japan (SPX) Jun 11, 2018

Increased amounts of succinate are produced based on overexpression of PEPC genes and raising the cultivation temperature.

Succinate is widely used as a raw ingredient for petrochemicals, and there is high demand for a way of producing succinate that is renewable and environmentally benign. A Japanese researcher has discovered that succinate production levels increase when cyanobacteria is grown above the ideal temperature for cell growth. He used insights into the metabolic pathway engineering to achieve the world's most efficient production rate for bio-succinate.

The discovery was made by Professor Tomohisa Hasunuma (Kobe University Graduate School of Science, Technology and Innovation) as a Japan Science and Technology Agency Strategic Basic Research Program. The findings were published in Metabolic Engineering on May 27.

Professor Hasunuma's research team aimed to find the reaction that acts as the bottleneck in the metabolic pathway when CO2 is converted into succinate, then use genetic engineering to speed up this bottleneck reaction and increase the production of succinate.

Metabolome analysis measures the amounts of the various metabolic substances within cells, and it can be used to estimate the metabolic intermediates that contribute to increased production of succinate. The research team built on this technology to develop a dynamic metabolome analysis technique that can observe the turnover in amounts of intracellular metabolites. By applying dynamic metabolome analysis when they observed an increase in succinate production, they were able to identify the bottleneck reaction in the succinate biosynthesis pathway. The cyanobacterium used in this study (Synechocystis sp. PCC 6803) is one of the most popular cyanobacteria for research worldwide. The team found that the ideal temperature for making succinate from this cyanobacterium is about 7 degrees Celsius higher than the cell growth temperature of 30 degrees Celsius.

Using dynamic metabolome analysis they clarified the mechanism for producing succinate at high temperatures, and showed that PEPC (phosphoenolpyruvate carboxylase) is involved in the bottleneck reaction. The group then developed a recombinant Synechocystis which has higher PEPC activity than the wild type through genetic engineering. By improving PEPC reaction, and growing cyanobacteria at 37 degrees Celsius, they managed to raise the production rate of succinate to 7.5 times higher than previous studies.

"This study is an important step towards producing bio-succinate from CO2. We now aim to increase the production of succinate by refining the metabolic pathway" comments Professor Hasunuma. "By targeting various metabolic systems, this line of research could make large contributions in basic research into metabolic pathway control structures, and applied research into substance production."

Succinate is widely used as a raw ingredient for petrochemicals, and there is high demand for a way of producing succinate that is renewable and environmentally benign. A Japanese researcher has discovered that succinate production levels increase when cyanobacteria is grown above the ideal temperature for cell growth. He used insights into the metabolic pathway engineering to achieve the world's most efficient production rate for bio-succinate.

The discovery was made by Professor Tomohisa Hasunuma (Kobe University Graduate School of Science, Technology and Innovation) as a Japan Science and Technology Agency Strategic Basic Research Program. The findings were published in Metabolic Engineering on May 27.

Professor Hasunuma's research team aimed to find the reaction that acts as the bottleneck in the metabolic pathway when CO2 is converted into succinate, then use genetic engineering to speed up this bottleneck reaction and increase the production of succinate.

Metabolome analysis measures the amounts of the various metabolic substances within cells, and it can be used to estimate the metabolic intermediates that contribute to increased production of succinate. The research team built on this technology to develop a dynamic metabolome analysis technique that can observe the turnover in amounts of intracellular metabolites. By applying dynamic metabolome analysis when they observed an increase in succinate production, they were able to identify the bottleneck reaction in the succinate biosynthesis pathway.

The cyanobacterium used in this study (Synechocystis sp. PCC 6803) is one of the most popular cyanobacteria for research worldwide. The team found that the ideal temperature for making succinate from this cyanobacterium is about 7 degrees Celsius higher than the cell growth temperature of 30 degrees Celsius.

Using dynamic metabolome analysis they clarified the mechanism for producing succinate at high temperatures, and showed that PEPC (phosphoenolpyruvate carboxylase) is involved in the bottleneck reaction. The group then developed a recombinant Synechocystis which has higher PEPC activity than the wild type through genetic engineering. By improving PEPC reaction, and growing cyanobacteria at 37 degrees Celsius, they managed to raise the production rate of succinate to 7.5 times higher than previous studies.

"This study is an important step towards producing bio-succinate from CO2. We now aim to increase the production of succinate by refining the metabolic pathway" comments Professor Hasunuma.

"By targeting various metabolic systems, this line of research could make large contributions in basic research into metabolic pathway control structures, and applied research into substance production."

Research paper


Related Links
Kobe University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Magic in metal could help put excess carbon dioxide to good use
Newark DE (SPX) Jun 05, 2018
The chunk of metal sitting on a table in Joel Rosenthal's office at the University of Delaware looks like it should belong in a wizard's pocket. Shiny silver with shocks of pink and splashes of gold, it's called bismuth, and it's currently used to make products ranging from shotgun pellets to cosmetics and antacids, including Pepto-Bismol. But Professor Rosenthal's research is expanding bismuth's repertoire - he's identified a kind of magic in the metal that may be just what the doctor ordered for ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
NanoRacks Complete Barrios Protein Crystal Growth Operations on Space Station

Trio reach Earth from ISS with football slated for World Cup

NASA selects US companies to advance space resource collection

ESA astronaut Luca Parmitano to be Space Station commander on his next flight

CARBON WORLDS
Watch live: SpaceX to launch SES-12 communications satellite

Commercial satellite launch service market to grow strongly through 2024

Arianespace and ISIS to launch small satellites on the Vega SSMS POC flight

Gilmour Space prepares for suborbital hybrid rocket launch

CARBON WORLDS
Mars Curiosity's Labs Are Back in Action

From horizon to horizon: Celebrating 15 years of Mars Express

Red Planet rover set for extreme environment workout

Opportunity Mars rover ready to study rock targets up close

CARBON WORLDS
Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

China develops wireless systems for rockets

China's Queqiao satellite carries "large umbrella" into deep space

CARBON WORLDS
Airbus-built SES-12 dual-mission satellite successfully launched

Gogo and Iridium Partner to Deliver Best-in-Class Aircraft Connectivity

NASA Selects Small Business Technology Awards

From ships to satellites: Scotland aims for the sky

CARBON WORLDS
Cooling by laser beam

Large-scale and sustainable 3D printing with the most ubiquitous natural material

Engineers convert commonly discarded material into high-performance adhesive

Is there an end to the periodic table

CARBON WORLDS
Searching for Potential Life-Hosting Planets Beyond Earth

Sorry ET, Got Here First: Russian Scientist Suggests Humans Would Destroy Aliens

How microbes survive clean rooms and contaminate spacecraft

Planets Can Easily Exist in Triple Star Systems

CARBON WORLDS
Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'

Scientists reveal the secrets behind Pluto's dunes

'Surprising' methane dunes found on Pluto

Pluto may be giant comet made up of comets, study says









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.