. 24/7 Space News .
CARBON WORLDS
World's hardest material, diamond, is flexible
by Staff Writers
Singapore (SPX) Apr 20, 2018

illustration only

Diamond, the world's hardest natural material, is also flexible when made into nanoscale needles, according to a paper published in Science about a surprising discovery by an international team of scientists that includes Prof Subra Suresh, President of Nanyang Technological University, Singapore (NTU Singapore).

The research team demonstrated that diamond nano-needles - about a thousand times thinner than a strand of human hair - can be bent and stretched up to nine per cent, before bouncing back to their original state when pressure is removed.

Bulk diamond, in sizes easily visible to the naked eye, would be expected to stretch by well below one per cent, while a similar lack of deformability is also observed for other typically strong and brittle materials, and attempts to flex them cause them to break.

The scientists predict that their discovery may lead to new applications in bioimaging and biosensing, drug delivery, data storage, opto-electronic devices and ultra-strength nanostructures. Using elastic strains induced by mechanical deformation, such as bending, also opens up new avenues to tailor electrical, magnetic, optical and other physical properties.

Published in the journal Science, the finding was made by an interdisciplinary team whose senior author is Prof Subra Suresh, President and also Distinguished University Professor at NTU Singapore. Other corresponding authors include Prof Yang Lu and Prof Wenjun Zhang from the City University of Hong Kong, Dr Ming Dao from the Massachusetts Institute of Technology (MIT) in United States, with other co-authors from Hong Kong, United States and South Korea.

Using a scanning electron microscope to 'video record' the process in real time, the team used a diamond probe to put pressure on the sides of the diamond nano-needles, which were grown through a special process called chemical vapour deposition and etched into final shape. The team measured how much each needle could bend before it fractured.

"Our results were so surprising that we had to run the experiments again under different conditions just to confirm them," said Prof Suresh. "We also performed detailed computer simulations of the actual specimens and bending experiments to measure and determine the maximum tensile stress and strain that the diamond nano-needles could withstand before breaking.

"This work also demonstrates that what is usually not possible at the macroscopic and microscopic scales can occur at the nano-scale where the entire specimen consists of only dozens or hundreds of atoms, and where the surface to volume ratio is large."

The team ran hundreds of computer simulations alongside their experimental tests to understand and explain how the diamond needles underwent large elastic strains, as brittle materials usually stretch less than one per cent.

"After two years of careful iterations between simulations and real-time experiments, we now know that the deformed shape of a bent nano-needle is the key in determining its maximum tensile strain achieved," Dr Dao explained. "The controlled bending deformation also enables precise control and on-the-fly alterations of the maximum strain in the nano-needle below its fracture limit."

Previous theoretical studies found that when elastic strain exceeds one percent, quantum mechanical calculations indicate significant physical or chemical property changes. The possibility of introducing elastic strains in diamond by flexing it up to 9% provides new avenues for fine-tuning its electronic properties. In addition, this phenomenon could be used to tailor mechanical, thermal, optical, magnetic, electrical, and light-emitting properties to design advanced materials for various applications.

In addition to showing up to 9% tensile stretch in single crystal diamonds, Prof Suresh and his collaborators also showed that polycrystalline diamond nano-needles, where each needle comprises many nano-size grains or crystals of diamond, can withstand a reversible, elastic stretch of up to 4% before breaking.

When maximum flexibility can be changed in real-time to between 0 to 9 per cent in nano-diamonds, there is a lot of potential for exploring unprecedented material properties.

Examples of specific potential applications for the nano-diamonds include design of better ultra-small biosensors for greater performance. Another application area of particular significance is the nitrogen-vacancy (NV) emission centres in diamond which are extremely sensitive to magnetic fields, temperatures, ion concentrations and spin densities. Since changes in elastic strains are sensitive to magnetic fields, potential applications could include such fields as data storage where lasers could encode data into diamonds.

As diamonds are known to be biocompatible, they could also be useful for drug delivery into cells where strong yet flexible nano-needles are needed.

In biosensing applications, NV could also be used in Magnetic Resonance Imaging (MRI) or Nuclear Magnetic Resonance (NMR) to achieve even higher accuracy and resolutions as well as 3-dimensional imaging for complex nanostructures and biomolecules.

This discovery shows new pathways for producing novel diamond architectures for mechanical applications as well as a variety of functional applications in devices, biomedicine, imaging, micro-testing, and materials science and engineering.


Related Links
Nanyang Technological University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
First global CO2 maps published using China's TanSat data
Washington DC (UPI) Apr 16, 2018
Scientists have published the first global CO2 maps compiled using data collected by China's TanSat. The maps, published in the journal Advances in Atmospheric Sciences, are powered by TanSat observations made between April and July 2017. Researchers expect the maps and related data to help scientists build more accurate climate models. "Global warming is a major problem, for which carbon dioxide is the main greenhouse gas involved in heating the troposphere," Yang Dongxu, researcher wit ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
NASA Takes First 3-D Microscopic Image on the Space Station

NASA's New Space 'Botanist' Arrives at Launch Site

China strengthens international space cooperation

US Senate narrowly confirms Trump's new NASA chief

CARBON WORLDS
SpaceX blasts off NASA's new planet-hunter, TESS

Lockheed awarded $928M for hypersonic strike weapon

US Air Force awards nearly $1 bn for hypersonic missile

New DARPA Challenge Seeks Flexible and Responsive Launch Solutions

CARBON WORLDS
Clear as mud: Desiccation cracks help reveal the shape of water on Mars

SwRI's Martian moons model indicates formation following large impact

US, Russia likely to go to Mars Together, former NASA astronaut says

NASA scientist to discuss 'Swimming in Martian Lakes: Curiosity at Gale Crater'

CARBON WORLDS
China to launch Long March-5 Y3 rocket in late 2018

The Long Game: China Seeks to Transfer Its Silk Industry to Far Side of the Moon

Flowers on the Moon? China's Chang'e-4 to launch lunar spring

China's 'space dream': A Long March to the moon

CARBON WORLDS
Airbus has shipped SES-12 highly innovative satellite to launch base

Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

CARBON WORLDS
NIST's new quantum method generates really random numbers

Writing and deleting magnets with lasers

'Artificial mole' could warn of cancer: study

Virtual contact lenses for radar satellites

CARBON WORLDS
Scientists blast iron with lasers to study the cores of rocky exoplanets

We think we're the first advanced earthlings - but how do we really know?

Are we alone? NASA's new planet hunter aims to find out

Newly discovered salty subglacial lakes could help search for life in solar system

CARBON WORLDS
Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole

SSL to provide of critical capabilities for Europa Flyby Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.